Stable N-doped Ti3C2Tx gas sensors for recoverable detection of ammonia at room temperature

被引:4
|
作者
Ahmadian, Zahra [1 ]
Mohammadi, Somayeh [2 ]
Mortazavi, Yadollah [1 ]
Khodadadi, Abbas Ali [2 ]
机构
[1] Univ Tehran, Coll Engn, Sch Chem Engn, Catalysis & Nanostruct Mat Res Lab, Tehran, Iran
[2] Univ Tehran, Coll Engn, Sch Engn Sci, Tehran, Iran
基金
美国国家科学基金会;
关键词
N-doped; MXene; Room temperature; Ammonia; Gas sensor; Recovery; Drift; SENSING PERFORMANCE; SURFACE-CHEMISTRY; MXENE; SENSITIVITY;
D O I
10.1016/j.ceramint.2023.09.196
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, highly recoverable, and stable, nitrogen-doped Ti3C2Tx-based sensors are developed for ammonia detection at room-temperature. Ti3C2Tx MXene as a room-temperature gas sensor has two main drawbacks: weak recovery and resistance drift. In this work; Ti3C2Tx nano-sheets were derived from the pre-synthesized Ti3AlC2 by selective aluminum etching using HF acid. The sensors fabricated using pristine Ti3C2Tx had high response to-ward polar gases, particularly ammonia. The sensors' response to 100 ppm ammonia was 10%. However, they experienced incomplete recovery and baseline resistance drift. To overcome these problems, we introduced a novel method, in which, before fabricating the gas sensors, the surface of synthesized Ti3C2Tx MXene was modified by a nitrogen treatment strategy. In this method, the MXene layers were doped with nitrogen using NH3 gas at 500 degrees C for 2 h. In nitrogen-doped Ti3C2Tx-based sensors, both recovery and drift problems disappeared. The response of the nitrogen-doped Ti3C2Tx is 3.7% toward 100 ppm ammonia, which is a notable response for a stable, recoverable, room-temperature gas sensor.
引用
收藏
页码:38635 / 38643
页数:9
相关论文
共 50 条
  • [31] Layered Ti3C2Tx MXene/CuO spindles composites for NH3 detection at room-temperature
    Liu, Miao
    Ding, Yongling
    Lu, Zhichen
    Song, Peng
    Wang, Qi
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [32] N-doped reduced graphene oxide for room-temperature NO gas sensors
    Chang, Yu-Sung
    Chen, Feng-Kuan
    Tsai, Du-Cheng
    Kuo, Bing-Hau
    Shieu, Fuh-Sheng
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [33] N-doped reduced graphene oxide for room-temperature NO gas sensors
    Yu-Sung Chang
    Feng-Kuan Chen
    Du-Cheng Tsai
    Bing-Hau Kuo
    Fuh-Sheng Shieu
    [J]. Scientific Reports, 11
  • [34] Layered Ti3C2Tx MXene heterostructured with V2O5 nanoparticles for enhanced room temperature ammonia sensing
    [J]. Liang, Jiran (liang_jiran@tju.edu.cn), 1600, Elsevier Ltd (1010):
  • [35] Room temperature and anti-humidity NH3 detection based on GaN nanorods/Ti3C2Tx MXene composite gas sensor
    Han, Dan
    Liu, Zhihua
    Liu, Lulu
    Li, Donghui
    Chen, Yi
    Wang, Hongtao
    Zhao, Li
    Wang, Weidong
    Sang, Shengbo
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2023, 393
  • [36] Highly selective NH3 gas sensor based on polypyrrole/Ti3C2Tx nanocomposites operating at room temperature
    Chen, Pu
    Zhao, Zhihua
    Shao, Zhigang
    Tian, Ye
    Li, Bo
    Huang, Bo
    Zhang, Shuaiwen
    Liu, Chunbo
    Shen, Xiaoqing
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (09) : 6168 - 6177
  • [37] In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature
    Liu, Miao
    Wang, Zeyu
    Song, Peng
    Yang, Zhongxi
    Wang, Qi
    [J]. CERAMICS INTERNATIONAL, 2021, 47 (16) : 23028 - 23037
  • [38] Highly selective NH3 gas sensor based on polypyrrole/Ti3C2Tx nanocomposites operating at room temperature
    Pu Chen
    Zhihua Zhao
    Zhigang Shao
    Ye Tian
    Bo Li
    Bo Huang
    Shuaiwen Zhang
    Chunbo Liu
    Xiaoqing Shen
    [J]. Journal of Materials Science: Materials in Electronics, 2022, 33 : 6168 - 6177
  • [39] ZnSnO3 nanocubes/Ti3C2Tx MXene composites for enhanced formaldehyde gas sensing properties at room temperature
    Sima, Zenghui
    Song, Peng
    Ding, Yongling
    Lu, Zhichen
    Wang, Qi
    [J]. APPLIED SURFACE SCIENCE, 2022, 598
  • [40] Controllable synthesis of 3D PdCu/Ti3C2Tx hierarchical nanostructures for chemiresistive room temperature H2 sensors
    Qiu, Changkun
    Zhang, Hao
    Li, Qingrun
    Song, Yifan
    An, Fei
    Wang, Haozhi
    Wang, Shiqiang
    Zhu, Liang
    Lv, Chunxiao
    Zhang, Dongzhi
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2024, 417