In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature

被引:90
|
作者
Liu, Miao [1 ]
Wang, Zeyu [1 ]
Song, Peng [1 ]
Yang, Zhongxi [1 ]
Wang, Qi [1 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti3C2Tx MXene; In2O3; nanocube; Methanol; Gas sensors; Room temperature; HYDROTHERMAL SYNTHESIS; FACILE SYNTHESIS; HIGH RESPONSE; SENSOR; PERFORMANCE; NANOSHEETS; ACETONE; NANOSPHERES; SNO2;
D O I
10.1016/j.ceramint.2021.05.016
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Highly active two-dimensional (2D) nanocomposites, integrating the unique merits of individual components and synergistic effects of composites, have been recently receiving attention for gas sensing. In this work, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites were synthesized using In2O3 nanocubes and layered Ti3C2Tx MXene via a facile hydrothermal self-assembly method. Characterization results indicated that the In2O3 nanocubes with sizes approximately 20-130 nm in width were well dispersed on the surface of layered Ti3C2Tx MXene to form numerous heterostructure interfaces. Based on the synergistic effects of electronic properties and gas-adsorption capabilities, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites exhibited high response (29.6%-5 ppm) and prominent selectivity to methanol at room temperature. Meanwhile, the low detection concentration could be reduced to ppm-level, the response/recovery times are shortened to 6.5/3.5 s, excellent linearity and outstanding repeatability. The strategy of compositing layered MXene with metal oxide semiconductor provides a novel pathway for the future development of room temperature gas sensors.
引用
收藏
页码:23028 / 23037
页数:10
相关论文
共 50 条
  • [1] ZnSnO3 nanocubes/Ti3C2Tx MXene composites for enhanced formaldehyde gas sensing properties at room temperature
    Sima, Zenghui
    Song, Peng
    Ding, Yongling
    Lu, Zhichen
    Wang, Qi
    [J]. APPLIED SURFACE SCIENCE, 2022, 598
  • [2] α-Fe2O3 nanocubes/Ti3C2Tx MXene composites for improvement of acetone sensing performance at room temperature
    Liu, Miao
    Ji, Jun
    Song, Peng
    Liu, Min
    Wang, Qi
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2021, 349
  • [3] Fabrication of Ti3C2Tx/In2O3 nanocomposites for enhanced ammonia sensing at room temperature
    Zhou, Ming
    Han, Yutong
    Yao, Yu
    Xie, Lili
    Zhao, Xueling
    Wang, Jingrong
    Zhu, Zhigang
    [J]. CERAMICS INTERNATIONAL, 2022, 48 (05) : 6600 - 6607
  • [4] 2H-MoS2/Ti3C2Tx MXene composites for enhanced NO2 gas sensing properties at room temperature
    Yan, Hao
    Chu, Lihua
    Li, Ze
    Sun, Changxu
    Shi, Yuxin
    Ma, Jing
    [J]. SENSORS AND ACTUATORS REPORTS, 2022, 4
  • [5] 2H-MoS2/Ti3C2Tx MXene composites for enhanced NO2 gas sensing properties at room temperature
    Yan, Hao
    Chu, Lihua
    Li, Ze
    Sun, Changxu
    Shi, Yuxin
    Ma, Jing
    [J]. Sensors and Actuators Reports, 2022, 4
  • [6] Polymeric Ti3C2Tx MXene Composites for Room Temperature Ammonia Sensing
    Jin, Ling
    Wu, Chenglong
    Wei, Kang
    He, Lifang
    Gao, Hong
    Zhang, Hexin
    Zhang, Kui
    Asiri, Abdullah M.
    Alamry, Khalid A.
    Yang, Lei
    Chu, Xiangfeng
    [J]. ACS APPLIED NANO MATERIALS, 2020, 3 (12) : 12071 - 12079
  • [7] MOFs-derived In2O3/ZnO/Ti3C2TX MXene ternary nanocomposites for ethanol gas sensing at room temperature
    Zhang, Shuai
    Ding, Yongling
    Wang, Qi
    Song, Peng
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2023, 393
  • [8] Au-decorated In2O3 nanospheres/exfoliated Ti3C2Tx MXene nanosheets for highly sensitive formaldehyde gas sensing at room temperature
    Liu, Miao
    Sun, Ruiyang
    Sima, Zenghui
    Song, Peng
    Ding, Yongling
    Wang, Qi
    [J]. APPLIED SURFACE SCIENCE, 2022, 605
  • [9] Enhanced Gas Sensing Performance of ZnO/Ti3C2Tx MXene Nanocomposite
    Qui Thanh Hoai Ta
    Thakur, Deepika
    Noh, Jin-Seo
    [J]. MICROMACHINES, 2022, 13 (10)
  • [10] Sensing performance of α-Fe2O3/Ti3C2Tx MXene nanocomposites to NH3 at room temperature
    Liu, Miao
    Ji, Jun
    Song, Peng
    Wang, Jiaxin
    Wang, Qi
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 898