Graph Representation Learning for Microarchitecture Design Space Exploration

被引:1
|
作者
Yi, Xiaoling [1 ,2 ]
Lu, Jialin [1 ,2 ]
Xiong, Xiankui [4 ,5 ]
Xu, Dong [4 ,5 ]
Shang, Li [1 ,3 ]
Yang, Fan [1 ,2 ]
机构
[1] Fudan Univ, State Key Lab Integrated Chips & Syst, Shanghai, Peoples R China
[2] Fudan Univ, Sch Microelect, Shanghai, Peoples R China
[3] Fudan Univ, Sch Comp Sci, China & Shanghai Key Lab Data Sci, Shanghai, Peoples R China
[4] ZTE Corp, Shenzhen, Peoples R China
[5] State Key Lab Mobile Network & Mobile Multimedia, Shanghai, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PERFORMANCE;
D O I
10.1109/DAC56929.2023.10247687
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Design optimization of modern microprocessors is a complex task due to the exponential growth of the design space. This work presents GRL-DSE, an automatic microarchitecture search framework based on graph embeddings. GRL-DSE uses graph representation learning to build a compact and continuous embedding space. Multi-objective Bayesian optimization using an ensemble surrogate model conducts microarchitecture design space exploration in the graph embedding space to efficiently and holistically optimize performance-power-area (PPA) objectives. Experimental studies on RISC-V BOOM show that GRL-DSE outperforms previous techniques by 74.59% on Pareto front quality and outperforms manual designs in terms of PPA.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Machine Learning for Microarchitecture Power Modeling and Design Space Exploration: A Survey
    Zhai, Jianwang
    Ling, Zichao
    Bai, Chen
    Zhao, Kang
    Yu, Bei
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (06): : 1351 - 1369
  • [2] Hybrid Graph Representation and Learning Framework for High-Level Synthesis Design Space Exploration
    Taghipour, Pouya
    Granger, Eric
    Blaquière, Yves
    [J]. IEEE Access, 2024, 12 : 189574 - 189589
  • [3] On Advanced Methodologies for Microarchitecture Design Space Exploration
    Liu, Tianji
    Wang, Qijing
    Liu, Lixin
    Wang, Fangzhou
    Young, Evangeline F. Y.
    [J]. PROCEEDING OF THE GREAT LAKES SYMPOSIUM ON VLSI 2024, GLSVLSI 2024, 2024, : 376 - 382
  • [4] Microarchitecture Design Space Exploration via Pareto-Driven Active Learning
    Zhai, Jianwang
    Cai, Yici
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2023, 31 (11) : 1727 - 1739
  • [5] An Integrated Framework for Joint Design Space Exploration of Microarchitecture and Circuits
    Azizi, Omid
    Mahesri, Aqeel
    Stevenson, John P.
    Patel, Sanjay J.
    Horowitz, Mark
    [J]. 2010 DESIGN, AUTOMATION & TEST IN EUROPE (DATE 2010), 2010, : 250 - 255
  • [6] Informed microarchitecture design space exploration using workload dynamics
    Cho, Chang-Burm
    Zhang, Wangyuan
    Li, Tao
    [J]. MICRO-40: PROCEEDINGS OF THE 40TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, 2007, : 274 - 285
  • [7] An aCCELERATOR-AWARE MICROARCHITECTURE SIMULATOR FOR DESIGN SPACE EXPLORATION
    Gao, Di
    Zhuo, Cheng
    [J]. 2018 CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE (CSTIC), 2018,
  • [8] 2022 ICCAD CAD Contest Problem C: Microarchitecture Design Space Exploration
    Li, Sicheng
    Bai, Chen
    Wei, Xuechao
    Shi, Bizhao
    Chen, Yen-Kuang
    Xie, Yuan
    [J]. 2022 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2022,
  • [9] Architecture-Level Design Space Exploration of SuperScalar Microarchitecture for Network Applications
    Salehi, Mostafa E.
    Dorosti, Hamed
    Fakhraie, Sied Mehdi
    [J]. 13TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN: ARCHITECTURES, METHODS AND TOOLS, 2010, : 269 - 272
  • [10] IT-DSE: Invariance Risk Minimized Transfer Microarchitecture Design Space Exploration
    Yu, Ziyang
    Bai, Chen
    Hu, Shoubo
    Chen, Ran
    He, Taohai
    Yuan, Mingxuan
    Yu, Bei
    Wong, Martin
    [J]. 2023 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2023,