Microarchitecture Design Space Exploration via Pareto-Driven Active Learning

被引:1
|
作者
Zhai, Jianwang [1 ,2 ]
Cai, Yici [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Integrated Circuits, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Active learning (AL); design space exploration (DSE); hypervolume; microarchitecture; Pareto fronts; RISC-V Berkeley out-of-order machine (BOOM); MODEL;
D O I
10.1109/TVLSI.2023.3311620
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we propose a microarchitecture design space exploration (DSE) approach via Pareto-driven active learning (AL). First, a more accurate dynamic tree ensemble model is used to guide the exploration and can give the importance of each design parameter. Then, a Pareto-driven AL approach is proposed that prioritizes the exploration of designs with larger hypervolume contributions in the predicted Pareto fronts and allows the acceptance of poor solutions to handle model inaccuracies. Finally, a parallel strategy is utilized to speed up the exploration. The experimental results on the 7-nm RISC-V Berkeley out-of-order machine (BOOM) show that our method can find diversified designs converging to real Pareto fronts more efficiently, achieving better exploration quality and efficiency than previous work.
引用
收藏
页码:1727 / 1739
页数:13
相关论文
共 50 条
  • [1] Graph Representation Learning for Microarchitecture Design Space Exploration
    Yi, Xiaoling
    Lu, Jialin
    Xiong, Xiankui
    Xu, Dong
    Shang, Li
    Yang, Fan
    [J]. 2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC, 2023,
  • [2] PPATuner: Pareto-driven Tool Parameter Auto-tuning in Physical Design via Gaussian Process Transfer Learning
    Geng, Hao
    Xu, Qi
    Ho, Tsung-Yi
    Yu, Bei
    [J]. PROCEEDINGS OF THE 59TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC 2022, 2022, : 1237 - 1242
  • [3] Machine Learning for Microarchitecture Power Modeling and Design Space Exploration: A Survey
    Zhai, Jianwang
    Ling, Zichao
    Bai, Chen
    Zhao, Kang
    Yu, Bei
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (06): : 1351 - 1369
  • [4] On Advanced Methodologies for Microarchitecture Design Space Exploration
    Liu, Tianji
    Wang, Qijing
    Liu, Lixin
    Wang, Fangzhou
    Young, Evangeline F. Y.
    [J]. PROCEEDING OF THE GREAT LAKES SYMPOSIUM ON VLSI 2024, GLSVLSI 2024, 2024, : 376 - 382
  • [5] Design-Space Exploration of Pareto-Optimal Architectures for Deep Learning with DVFS
    Santoro, Giulia
    Casu, Mario R.
    Peluso, Valentino
    Calimera, Andrea
    Alioto, Massimo
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [6] An Integrated Framework for Joint Design Space Exploration of Microarchitecture and Circuits
    Azizi, Omid
    Mahesri, Aqeel
    Stevenson, John P.
    Patel, Sanjay J.
    Horowitz, Mark
    [J]. 2010 DESIGN, AUTOMATION & TEST IN EUROPE (DATE 2010), 2010, : 250 - 255
  • [7] Informed microarchitecture design space exploration using workload dynamics
    Cho, Chang-Burm
    Zhang, Wangyuan
    Li, Tao
    [J]. MICRO-40: PROCEEDINGS OF THE 40TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, 2007, : 274 - 285
  • [8] An aCCELERATOR-AWARE MICROARCHITECTURE SIMULATOR FOR DESIGN SPACE EXPLORATION
    Gao, Di
    Zhuo, Cheng
    [J]. 2018 CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE (CSTIC), 2018,
  • [9] ROI-HIT: Region of Interest-Driven High-Dimensional Microarchitecture Design Space Exploration
    Zhao, Xuyang
    Gao, Tianning
    Zhao, Aidong
    Bi, Zhaori
    Yan, Changhao
    Yang, Fan
    Wang, Sheng-Guo
    Zhou, Dian
    Zeng, Xuan
    [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43 (11) : 4178 - 4189
  • [10] Pareto optimal design space exploration for accelerated CNN on FPGA
    Reggiani, Enrico
    Rabozzi, Marco
    Nestorov, Anna Maria
    Scolari, Alberto
    Stornaiulo, Luca
    Santambrogio, Marco D.
    [J]. 2019 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2019, : 107 - 114