Graph Convolutional Neural Network with Multi-Scale Attention Mechanism for EEG-Based Motion Imagery Classification

被引:1
|
作者
Zhu, Jun [1 ]
Liu, Qingshan [1 ]
Xu, Chentao [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[2] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph convolutional neural network; multi-scale attention mechanism; EEG; classification; POWER;
D O I
10.1142/S0218001423540204
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep learning has been widely used in the classification of EEG signals and achieved satisfactory results. However, the correlation between EEG electrodes is rarely considered, which has been proved that there are indeed connections between different brain regions. After considering the connections between EEG electrodes, the graph convolutional neural network is applied to detect human motor intents from EEG signals, where EEG data are transformed into graph data through phase lag index, time-domain and frequency-domain features with different signal bands. Meanwhile, a multi-scale attention mechanism is proposed to the network to improve the accuracy of classification. By using the multi-scale attention-based graph convolutional neural network, the accuracy of 93.22% is achieved with 10-fold cross-validation, which is higher than the compared methods which ignore the spatial correlations of EEG signals.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] TCACNet: Temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI
    Liu, Xiaolin
    Shi, Rongye
    Hui, Qianxin
    Xu, Susu
    Wang, Shuai
    Na, Rui
    Sun, Ying
    Ding, Wenbo
    Zheng, Dezhi
    Chen, Xinlei
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [22] A Multi-Domain Convolutional Neural Network for EEG-Based Motor Imagery Decoding
    Zhi, Hongyi
    Yu, Zhuliang
    Yu, Tianyou
    Gu, Zhenghui
    Yang, Jian
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 3988 - 3998
  • [23] Kernel Attention Based Multi-scale Adaptive Graph Convolutional Neural Network for Skeleton-Based
    Liu, Yanan
    Zhang, Hao
    Xu, Dan
    [J]. 2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 96 - 103
  • [24] EEG-based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism
    Zhang, Xiaowei
    Li, Junlei
    Hou, Kechen
    Hu, Bin
    Shen, Jian
    Pan, Jing
    [J]. 42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 128 - 133
  • [25] Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms
    Niu, Jing
    Li, Hua
    Zhang, Chen
    Li, Dengao
    [J]. MEDICAL PHYSICS, 2021, 48 (07) : 3878 - 3892
  • [26] A Multi-scale Convolutional Attention Based GRU Network for Text Classification
    Tang, Xianlun
    Chen, Yingjie
    Dai, Yuyan
    Xu, Jin
    Peng, Deguang
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3009 - 3013
  • [27] Multi-scale Convolutional Feature Fusion Network Based on Attention Mechanism for IoT Traffic Classification
    Liao, Niandong
    Guan, Jiayu
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [28] Multi-scale Convolutional Feature Fusion Network Based on Attention Mechanism for IoT Traffic Classification
    Niandong Liao
    Jiayu Guan
    [J]. International Journal of Computational Intelligence Systems, 17
  • [29] CTNet: a convolutional transformer network for EEG-based motor imagery classification
    Zhao, Wei
    Jiang, Xiaolu
    Zhang, Baocan
    Xiao, Shixiao
    Weng, Sujun
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [30] Fault Diagnosis Method for Bearing Based on Attention Mechanism and Multi-Scale Convolutional Neural Network
    Shen, Qimin
    Zhang, Zengqiang
    [J]. IEEE ACCESS, 2024, 12 : 12940 - 12952