AlexSegNet: an accurate nuclei segmentation deep learning model in microscopic images for diagnosis of cancer

被引:4
|
作者
Singha, Anu [1 ]
Bhowmik, Mrinal Kanti [2 ]
机构
[1] SRM Inst Sci & Technol, Dept Comp Sci & Engn, Delhi NCR Campus, Ghaziabad 201204, Uttar Pradesh, India
[2] Tripura Univ, Dept Comp Sci & Engn, Suryamaninagar 799022, Agartala, India
关键词
Convolutional neural network; Nuclei; Segmentation; Fluorescent; Histopathology; cancer;
D O I
10.1007/s11042-022-14098-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The nuclei segmentation of microscopic images is a key pre-requisite for cancerous pathological image analysis. However, an accurate nuclei cell segmentation is a long running major challenge due to the enormous color variability of staining, nuclei shapes, sizes, and clustering of overlapping cells. To address this challenges, we proposed a deep learning model, namely, AlexSegNet which is based upon AlexNet model Encoder-Decoder framework. In Encoder part, it stitches feature maps in the channel dimension to achieve feature fusion and uses a skip structure in Decoder part to combine low- and high-level features to ensure the segmentation effect of the nucleus. At final stage, we have also introduced a stacked network where feature maps are stacks on top of each other. We have used a publically available 2018 Data Science Bowl and Triple Negative Breast Cancer (TNBC) datasets of microscopic nuclei images for this study which comprises of several sample types such as small and large fluorescent, pink, purple, and grayscale tissue samples. Experimental results show that our proposed AlexSegNet achieved a segmentation maximum performance of 91.66% for Data Science Bowl dataset and 66.88% for TNBC dataset. The results are competitive compared to the results of other state-of-the-art models. This model is expected to be useful clinically for technician experts to succeed the analysis of cancer diagnosis into the survival chances of patients.
引用
收藏
页码:20431 / 20452
页数:22
相关论文
共 50 条
  • [41] Segmentation of Microscopic Breast Cancer Images for Cancer Detection
    Altiparmak, Hamit
    Nurcin, Fatih Veysel
    2019 8TH INTERNATIONAL CONFERENCE ON SOFTWARE AND COMPUTER APPLICATIONS (ICSCA 2019), 2019, : 268 - 271
  • [42] MSAL-Net: improve accurate segmentation of nuclei in histopathology images by multiscale attention learning network
    Ali, Haider
    ul Haq, Imran
    Cui, Lei
    Feng, Jun
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [43] MSAL-Net: improve accurate segmentation of nuclei in histopathology images by multiscale attention learning network
    Haider Ali
    Imran ul Haq
    Lei Cui
    Jun Feng
    BMC Medical Informatics and Decision Making, 22
  • [44] Automated segmentation of endometrial cancer on MR images using deep learning
    Erlend Hodneland
    Julie A. Dybvik
    Kari S. Wagner-Larsen
    Veronika Šoltészová
    Antonella Z. Munthe-Kaas
    Kristine E. Fasmer
    Camilla Krakstad
    Arvid Lundervold
    Alexander S. Lundervold
    Øyvind Salvesen
    Bradley J. Erickson
    Ingfrid Haldorsen
    Scientific Reports, 11
  • [45] Segmentation of Mammogram Images Using Deep Learning for Breast Cancer Detection
    Deb, Sagar Deep
    Jha, Rajib Kumar
    2022 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ROBOTICS (ICIPROB), 2022,
  • [46] Automated segmentation of endometrial cancer on MR images using deep learning
    Hodneland, Erlend
    Dybvik, Julie A.
    Wagner-Larsen, Kari S.
    Solteszova, Veronika
    Munthe-Kaas, Antonella Z.
    Fasmer, Kristine E.
    Krakstad, Camilla
    Lundervold, Arvid
    Lundervold, Alexander S.
    Salvesen, Oyvind
    Erickson, Bradley J.
    Haldorsen, Ingfrid
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [47] A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images
    Sharma, Parmanand
    Ninomiya, Takahiro
    Omodaka, Kazuko
    Takahashi, Naoki
    Miya, Takehiro
    Himori, Noriko
    Okatani, Takayuki
    Nakazawa, Toru
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [48] A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images
    Parmanand Sharma
    Takahiro Ninomiya
    Kazuko Omodaka
    Naoki Takahashi
    Takehiro Miya
    Noriko Himori
    Takayuki Okatani
    Toru Nakazawa
    Scientific Reports, 12
  • [49] Accurate Nuclei Segmentation in Breast Cancer Tumour Biopsies
    Kasturi, Surya
    Tran, William T.
    Shenfield, Alex
    2022 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (IEEE CIBCB 2022), 2022, : 304 - 311
  • [50] A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images
    Yuxin Cui
    Guiying Zhang
    Zhonghao Liu
    Zheng Xiong
    Jianjun Hu
    Medical & Biological Engineering & Computing, 2019, 57 : 2027 - 2043