Automated multifocus pollen detection using deep learning

被引:2
|
作者
Gallardo, Ramon [1 ]
Garcia-Orellana, Carlos J. [1 ]
Gonzalez-Velasco, Horacio M. [1 ]
Garcia-Manso, Antonio [1 ]
Tormo-Molina, Rafael [2 ]
Macias-Macias, Miguel [1 ]
Abengozar, Eugenio [2 ]
机构
[1] Univ Extremadura, Inst Comp Cient Avanzada, Ave Elvas S-N, Badajoz 06006, Spain
[2] Univ Extremadura, Fac Ciencias, Ave Elvas S-N, Badajoz 06006, Spain
关键词
Bright-field microscopy; Pollen recognition; Deep learning; Multifocus microscopy; Airborne pollen;
D O I
10.1007/s11042-024-18450-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pollen-induced allergies affect a significant part of the population in developed countries. Current palynological analysis in Europe is a slow and laborious process which provides pollen information in a weekly-cycle basis. In this paper, we describe a system that allows to locate and classify, in a single step, the pollen grains present in standard glass microscope slides. Besides, processing the samples in the z-axis allows us to increase the probability of detecting grains compared to solutions based on one image per sample. Our system has been trained to recognise 11 pollen types, achieving 97.6 % success rate locating grains, of which 96.3 % are also correctly identified (0.956 macro-F1 score), and with a 2.4 % grains lost. Our results indicate that deep learning provides a robust framework to address automated identification of various pollen types, facilitating their daily measurement.
引用
收藏
页码:72097 / 72112
页数:16
相关论文
共 50 条
  • [1] Efficient, automated and robust pollen analysis using deep learning
    Olsson, Ola
    Karlsson, Melanie
    Persson, Anna S.
    Smith, Henrik G.
    Varadarajan, Vidula
    Yourstone, Johanna
    Stjernman, Martin
    METHODS IN ECOLOGY AND EVOLUTION, 2021, 12 (05): : 850 - 862
  • [2] Detection of Leaf Disease Using Deep Learning A Deep Learning Based for Automated Detection.
    Agusthiyar, R.
    Devi, Shyamala J.
    Saravanabhavan, N. M.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (06): : 34 - 38
  • [3] POLLEN GRAIN CLASSIFICATION USING DEEP LEARNING OBJECT DETECTION
    Sergeant, C.
    Bielory, L.
    Joiner, D.
    Perigo, N.
    ANNALS OF ALLERGY ASTHMA & IMMUNOLOGY, 2021, 127 (05) : S23 - S23
  • [4] Automated Patient Discomfort Detection Using Deep Learning
    Ahmed, Imran
    Khan, Iqbal
    Ahmad, Misbah
    Adnan, Awais
    Aljuaid, Hanan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02): : 2559 - 2577
  • [5] Automated abnormalities detection in mammography using deep learning
    El-Banby, Ghada M.
    Salem, Nourhan S.
    Tafweek, Eman A.
    Abd El-Azziz, Essam N.
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (05) : 7279 - 7295
  • [6] Automated crater detection on Mars using deep learning
    Lee, Christopher
    PLANETARY AND SPACE SCIENCE, 2019, 170 : 16 - 28
  • [7] Towards Automated Tuberculosis detection using Deep Learning
    Kant, Sonaal
    Srivastava, Muktabh Mayank
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1250 - 1253
  • [8] Lane detection for automated driving using Deep Learning
    Schmidt, Manuel
    Krueger, Martin
    Lienke, Christian
    Oeljeklaus, Malte
    Nattermann, Till
    Mohamed, Manoj
    Hoffmann, Frank
    Bertram, Torsten
    AT-AUTOMATISIERUNGSTECHNIK, 2019, 67 (10) : 866 - 878
  • [9] Automated detection of corneal nerves using deep learning
    Qi, Hong
    Borroni, Davide
    Liu, Rongjun
    Williams, Bryan
    Beech, Mike
    Zhao, Yitian
    Ma, Baikai
    Romano, Vito
    Alam, Uazman
    Kaye, Stephen B.
    Zheng, Yalin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [10] Automated Electrocardiographic Detection of Pulmonary Hypertension Using Deep Learning
    Aras, Mandar A.
    Abreau, Sean
    Mills, Hunter
    Radhakrishnan, Lakshmi
    Klein, Liviu
    Mantri, Neha
    Rubin, Benjamin
    Barrios, Joshua
    Chehoud, Christel
    Kogan, Emily
    Gitton, Xavier
    CIRCULATION, 2021, 144