Prediction of Acid-Base and Potassium Imbalances in Intensive Care Patients Using Machine Learning Techniques

被引:3
|
作者
Phetrittikun, Ratchakit [1 ]
Suvirat, Kerdkiat [1 ]
Horsiritham, Kanakorn [2 ]
Ingviya, Thammasin [3 ,4 ]
Chaichulee, Sitthichok [1 ,4 ]
机构
[1] Prince Songkla Univ, Fac Med, Dept Biomed Sci & Biomed Engn, Hat Yai 90110, Thailand
[2] Prince Songkla Univ, Coll Digital Sci, Hat Yai 90110, Thailand
[3] Prince Songkla Univ, Fac Med, Dept Family & Prevent Med, Hat Yai 90110, Thailand
[4] Prince Songkla Univ, Fac Med, Res Ctr Med Data Analyt, Hat Yai 90110, Thailand
关键词
critical care; machine learning; acid-base balance; prediction; big data; health informatics; EARLY WARNING SCORE; MODEL; MORTALITY; SEPSIS;
D O I
10.3390/diagnostics13061171
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Acid-base disorders occur when the body's normal pH is out of balance. They can be caused by problems with kidney or respiratory function or by an excess of acids or bases that the body cannot properly eliminate. Acid-base and potassium imbalances are mechanistically linked because acid-base imbalances can alter the transport of potassium. Both acid-base and potassium imbalances are common in critically ill patients. This study investigated machine learning models for predicting the occurrence of acid-base and potassium imbalances in intensive care patients. We used an institutional dataset of 1089 patients with 87 variables, including vital signs, general appearance, and laboratory results. Gradient boosting (GB) was able to predict nine clinical conditions related to acid-base and potassium imbalances: mortality (AUROC = 0.9822), hypocapnia (AUROC = 0.7524), hypercapnia (AUROC = 0.8228), hypokalemia (AUROC = 0.9191), hyperkalemia (AUROC = 0.9565), respiratory acidosis (AUROC = 0.8125), respiratory alkalosis (AUROC = 0.7685), metabolic acidosis (AUROC = 0.8682), and metabolic alkalosis (AUROC = 0.8284). Some predictions remained relatively robust even when the prediction window was increased. Additionally, the decision-making process was made more interpretable and transparent through the use of SHAP analysis. Overall, the results suggest that machine learning could be a useful tool to gain insight into the condition of intensive care patients and assist in the management of acid-base and potassium imbalances.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Early prediction of circulatory failure in the intensive care unit using machine learning
    Hyland, Stephanie L.
    Faltys, Martin
    Huser, Matthias
    Lyu, Xinrui
    Gumbsch, Thomas
    Esteban, Cristobal
    Bock, Christian
    Horn, Max
    Moor, Michael
    Rieck, Bastian
    Zimmermann, Marc
    Bodenham, Dean
    Borgwardt, Karsten
    Ratsch, Gunnar
    Merz, Tobias M.
    [J]. NATURE MEDICINE, 2020, 26 (03) : 364 - +
  • [22] Early prediction of hypothermia in pediatric intensive care units using machine learning
    Singh, Pradeep
    Nagori, Aditya
    Lodha, Rakesh
    Sethi, Tavpritesh
    [J]. FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [23] Early prediction of MODS interventions in the intensive care unit using machine learning
    Chang Liu
    Zhenjie Yao
    Pengfei Liu
    Yanhui Tu
    Hu Chen
    Haibo Cheng
    Lixin Xie
    Kun Xiao
    [J]. Journal of Big Data, 10
  • [24] Early prediction of circulatory failure in the intensive care unit using machine learning
    Stephanie L. Hyland
    Martin Faltys
    Matthias Hüser
    Xinrui Lyu
    Thomas Gumbsch
    Cristóbal Esteban
    Christian Bock
    Max Horn
    Michael Moor
    Bastian Rieck
    Marc Zimmermann
    Dean Bodenham
    Karsten Borgwardt
    Gunnar Rätsch
    Tobias M. Merz
    [J]. Nature Medicine, 2020, 26 : 364 - 373
  • [25] Early prediction of hemodynamic interventions in the intensive care unit using machine learning
    Asif Rahman
    Yale Chang
    Junzi Dong
    Bryan Conroy
    Annamalai Natarajan
    Takahiro Kinoshita
    Francesco Vicario
    Joseph Frassica
    Minnan Xu-Wilson
    [J]. Critical Care, 25
  • [26] Early prediction of MODS interventions in the intensive care unit using machine learning
    Liu, Chang
    Yao, Zhenjie
    Liu, Pengfei
    Tu, Yanhui
    Chen, Hu
    Cheng, Haibo
    Xie, Lixin
    Xiao, Kun
    [J]. JOURNAL OF BIG DATA, 2023, 10 (01)
  • [27] Early prediction of hemodynamic interventions in the intensive care unit using machine learning
    Rahman, Asif
    Chang, Yale
    Dong, Junzi
    Conroy, Bryan
    Natarajan, Annamalai
    Kinoshita, Takahiro
    Vicario, Francesco
    Frassica, Joseph
    Xu-Wilson, Minnan
    [J]. CRITICAL CARE, 2021, 25 (01)
  • [28] ACID-BASE DISTURBANCE AND POTASSIUM DEPLETION IN SOME SURGICAL PATIENTS
    RICHARDSON, JE
    BILLINGHURST, JR
    VERE, DW
    [J]. LANCET, 1953, 265 (SEP19): : 587 - 590
  • [29] Prediction of the hemoglobin level in hemodialysis patients using machine learning techniques
    Martinez-Martinez, Jose M.
    Escandell-Montero, Pablo
    Barbieri, Carlo
    Soria-Olivas, Emilio
    Mari, Flavio
    Martinez-Sober, Marcelino
    Amato, Claudia
    Lopez, Antonio J. Serrano
    Bassi, Marcello
    Magdalena-Benedito, Rafael
    Stopper, Andrea
    Martin-Guerrero, Jose D.
    Gatti, Emanuele
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 117 (02) : 208 - 217
  • [30] Survival prediction among heart patients using machine learning techniques
    Almazroi, Abdulwahab Ali
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (01) : 134 - 145