Early prediction of MODS interventions in the intensive care unit using machine learning

被引:4
|
作者
Liu, Chang [1 ,2 ]
Yao, Zhenjie [3 ]
Liu, Pengfei [1 ]
Tu, Yanhui [4 ]
Chen, Hu [4 ]
Cheng, Haibo [4 ]
Xie, Lixin [1 ,2 ]
Xiao, Kun [1 ]
机构
[1] Chinese Peoples Liberat Army PLA Gen Hosp, Ctr Pulm & Crit Care Med, Beijing 100039, Peoples R China
[2] Nankai Univ, Sch Med, Tianjin 300071, Peoples R China
[3] Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
[4] Purple Mt Lab Networking Commun & Secur, Nanjing 211111, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
MODS; Stacked ensemble; Feature interpretation; Decision recommendation; MULTIPLE ORGAN DYSFUNCTION; EFFICACY;
D O I
10.1186/s40537-023-00719-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
BackgroundMultiple organ dysfunction syndrome (MODS) is one of the leading causes of death in critically ill patients. MODS is the result of a dysregulated inflammatory response that can be triggered by various causes. Owing to the lack of an effective treatment for patients with MODS, early identification and intervention are the most effective strategies. Therefore, we have developed a variety of early warning models whose prediction results can be interpreted by Kernel SHapley Additive exPlanations (Kernel-SHAP) and reversed by diverse counterfactual explanations (DiCE). So we can predict the probability of MODS 12 h in advance, quantify the risk factors, and automatically recommend relevant interventions.MethodsWe used various machine learning algorithms to complete the early risk assessment of MODS, and used a stacked ensemble to improve the prediction performance. The kernel-SHAP algorithm was used to quantify the positive and minus factors corresponding to the individual prediction results, and finally, the DiCE method was used to automatically recommend interventions. We completed the model training and testing based on the MIMIC-III and MIMIC-IV databases, in which the sample features in the model training included the patients' vital signs, laboratory test results, test reports, and data related to the use of ventilators.ResultsThe customizable model called SuperLearner, which integrated multiple machine learning algorithms, had the highest authenticity of screening, and its Yordon index (YI), sensitivity, accuracy, and utility_score on the MIMIC-IV test set were 0.813, 0.884, 0.893, and 0.763, respectively, which were all maximum values of eleven models. The area under the curve of the deep-wide neural network (DWNN) model on the MIMIC-IV test set was 0.960, and the specificity was 0.935, which were both the maximum values of all these models. The Kernel-SHAP algorithm combined with SuperLearner was used to determine the minimum value of glasgow coma scale (GCS) in the current hour (OR = 0.609, 95% CI 0.606-0.612), maximum value of MODS score corresponding to GCS in the past 24 h (OR = 2.632, 95% CI 2.588-2.676), and maximum score of MODS corresponding to creatinine in the past 24 h (OR = 3.281, 95% CI 3.267-3.295) were generally the most influential factors.ConclusionThe MODS early warning model based on machine learning algorithms has considerable application value, and the prediction efficiency of SuperLearner is superior to those of SubSuperLearner, DWNN, and other eight common machine learning models. Considering that the attribution analysis of Kernel-SHAP is a static analysis of the prediction results, we introduce the DiCE algorithm to automatically recommend counterfactuals to reverse the prediction results, which will be an important step towards the practical application of automatic MODS early intervention.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Early prediction of MODS interventions in the intensive care unit using machine learning
    Chang Liu
    Zhenjie Yao
    Pengfei Liu
    Yanhui Tu
    Hu Chen
    Haibo Cheng
    Lixin Xie
    Kun Xiao
    Journal of Big Data, 10
  • [2] Early prediction of hemodynamic interventions in the intensive care unit using machine learning
    Asif Rahman
    Yale Chang
    Junzi Dong
    Bryan Conroy
    Annamalai Natarajan
    Takahiro Kinoshita
    Francesco Vicario
    Joseph Frassica
    Minnan Xu-Wilson
    Critical Care, 25
  • [3] Early prediction of hemodynamic interventions in the intensive care unit using machine learning
    Rahman, Asif
    Chang, Yale
    Dong, Junzi
    Conroy, Bryan
    Natarajan, Annamalai
    Kinoshita, Takahiro
    Vicario, Francesco
    Frassica, Joseph
    Xu-Wilson, Minnan
    CRITICAL CARE, 2021, 25 (01)
  • [4] Early prediction of circulatory failure in the intensive care unit using machine learning
    Hyland, Stephanie L.
    Faltys, Martin
    Huser, Matthias
    Lyu, Xinrui
    Gumbsch, Thomas
    Esteban, Cristobal
    Bock, Christian
    Horn, Max
    Moor, Michael
    Rieck, Bastian
    Zimmermann, Marc
    Bodenham, Dean
    Borgwardt, Karsten
    Ratsch, Gunnar
    Merz, Tobias M.
    NATURE MEDICINE, 2020, 26 (03) : 364 - +
  • [5] Early prediction of circulatory failure in the intensive care unit using machine learning
    Stephanie L. Hyland
    Martin Faltys
    Matthias Hüser
    Xinrui Lyu
    Thomas Gumbsch
    Cristóbal Esteban
    Christian Bock
    Max Horn
    Michael Moor
    Bastian Rieck
    Marc Zimmermann
    Dean Bodenham
    Karsten Borgwardt
    Gunnar Rätsch
    Tobias M. Merz
    Nature Medicine, 2020, 26 : 364 - 373
  • [6] Early prediction of intensive care unit admission in emergency department patients using machine learning
    Pandey, Dinesh
    Jahanabadi, Hossein
    D'Arcy, Jack
    Doherty, Suzanne
    Vo, Hung
    Jones, Daryl
    Bellomo, Rinaldo
    AUSTRALIAN CRITICAL CARE, 2025, 38 (01)
  • [7] Machine Learning for Early Prediction of Sepsis in Intensive Care Unit (ICU) Patients
    Alanazi, Abdullah
    Aldakhil, Lujain
    Aldhoayan, Mohammed
    Aldosari, Bakheet
    MEDICINA-LITHUANIA, 2023, 59 (07):
  • [8] MACHINE LEARNING PREDICTION OF INTENSIVE CARE UNIT DELIRIUM
    Gong, Kirby
    Lu, Ryan
    Bergamaschi, Teya
    Sanyal, Akaash
    Guo, Joanna
    Kim, Hanbiehn
    Stevens, Robert
    CRITICAL CARE MEDICINE, 2021, 49 (01) : 14 - 14
  • [9] Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning
    Oh, Jooyoung
    Cho, Dongrae
    Park, Jaesub
    Na, Se Hee
    Kim, Jongin
    Heo, Jaeseok
    Shin, Cheung Soo
    Kim, Jae-Jin
    Park, Jin Young
    Lee, Boreom
    PHYSIOLOGICAL MEASUREMENT, 2018, 39 (03)
  • [10] Point of Care Prediction of Maternal Admission to the Intensive Care Unit Using Machine Learning
    Ganguli, Reetam
    Gupta, Megha
    Anderson, Katie
    Wagner, Stephen M.
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2023, 228 (01) : S216 - S216