Programming correlated magnetic states with gate-controlled moire geometry

被引:37
|
作者
Anderson, Eric [1 ]
Fan, Feng-Ren [2 ]
Cai, Jiaqi [1 ]
Holtzmann, William [1 ]
Taniguchi, Takashi [4 ]
Watanabe, Kenji [5 ]
Xiao, Di [1 ,6 ]
Yao, Wang [2 ,3 ]
Xu, Xiaodong [1 ,6 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
[3] HKU UCAS Joint Inst Theoret & Computat Phys, Hong Kong, Peoples R China
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[5] Natl Inst Mat Sci, Funct Mat Res Ctr, Tsukuba, Ibaraki 3050044, Japan
[6] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
关键词
D O I
10.1126/science.adg4268
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to control the underlying lattice geometry of a system may enable transitions between emergent quantum ground states. We report in situ gate switching between honeycomb and triangular lattice geometries of an electron many-body Hamiltonian in rhombohedral (R)-stacked molybdenum ditelluride (MoTe2) moire bilayers, resulting in switchable magnetic exchange interactions. At zero electric field, we observed a correlated ferromagnetic insulator near one hole per moire unit cell with a widely tunable Curie temperature up to 14 K. Applying an electric field switched the system into a half-filled triangular lattice with antiferromagnetic interactions; further doping this layer-polarized superlattice tuned the antiferromagnetic exchange interaction back to ferromagnetic. Our work demonstrates R-stacked MoTe2 moires to be a laboratory for engineering correlated states with nontrivial topology.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 50 条
  • [1] Gate-controlled series compensator on gate-controlled power semiconductor devices
    Ivakin V.N.
    Magnitskii A.A.
    [J]. Russian Electrical Engineering, 2008, 79 (10) : 566 - 575
  • [2] THE GEOMETRY OF A GATE-CONTROLLED N-N+-N GAAS WIRE
    RODHE, PM
    ROUHANIKALLEH, A
    ANDERSSON, TG
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1988, 3 (08) : 823 - 825
  • [3] Gate-controlled magnetic properties of the magnetic semiconductor (Zn,Co)O
    Lee, H. -J.
    Helgren, E.
    Hellman, F.
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (21)
  • [4] Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene
    Li, Jing
    Wen, Hua
    Watanabe, Kenji
    Taniguchi, Takashi
    Zhu, Jun
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (05)
  • [6] Gate-controlled transitions in triple dots with interdot repulsion and magnetic field
    Xiong, Yong-Chen
    Huang, Jin
    Wang, Wei-Zhong
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (45)
  • [7] Gate-controlled guiding of electrons in graphene
    Williams, J. R.
    Low, Tony
    Lundstrom, M. S.
    Marcus, C. M.
    [J]. NATURE NANOTECHNOLOGY, 2011, 6 (04) : 222 - 225
  • [8] GATE-CONTROLLED MOS VARIABLE CAPACITORS
    IMABUN, Y
    [J]. ELECTRICAL ENGINEERING IN JAPAN, 1973, 93 (03) : 123 - 128
  • [9] Gate-controlled conductance switching in DNA
    Xiang, Limin
    Palma, Julio L.
    Li, Yueqi
    Mujica, Vladimiro
    Ratner, Mark A.
    Tao, Nongjian
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [10] A schematic gate-controlled thyristor model
    Voronin P.A.
    Rashitov P.A.
    Astashev M.G.
    Remizevich T.V.
    [J]. Russian Electrical Engineering, 2015, 86 (9) : 553 - 562