Programming correlated magnetic states with gate-controlled moire geometry

被引:37
|
作者
Anderson, Eric [1 ]
Fan, Feng-Ren [2 ]
Cai, Jiaqi [1 ]
Holtzmann, William [1 ]
Taniguchi, Takashi [4 ]
Watanabe, Kenji [5 ]
Xiao, Di [1 ,6 ]
Yao, Wang [2 ,3 ]
Xu, Xiaodong [1 ,6 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
[3] HKU UCAS Joint Inst Theoret & Computat Phys, Hong Kong, Peoples R China
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[5] Natl Inst Mat Sci, Funct Mat Res Ctr, Tsukuba, Ibaraki 3050044, Japan
[6] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
关键词
D O I
10.1126/science.adg4268
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to control the underlying lattice geometry of a system may enable transitions between emergent quantum ground states. We report in situ gate switching between honeycomb and triangular lattice geometries of an electron many-body Hamiltonian in rhombohedral (R)-stacked molybdenum ditelluride (MoTe2) moire bilayers, resulting in switchable magnetic exchange interactions. At zero electric field, we observed a correlated ferromagnetic insulator near one hole per moire unit cell with a widely tunable Curie temperature up to 14 K. Applying an electric field switched the system into a half-filled triangular lattice with antiferromagnetic interactions; further doping this layer-polarized superlattice tuned the antiferromagnetic exchange interaction back to ferromagnetic. Our work demonstrates R-stacked MoTe2 moires to be a laboratory for engineering correlated states with nontrivial topology.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 50 条
  • [41] Recursive Gate-Controlled Convolution for Remote Sensing Detection
    Li, Hongbing
    Xu, Yajing
    Xu, Qianfang
    Jiang, Si
    Yan, Bowen
    Weng, JianXiang
    Chen, Qiao
    [J]. Proceedings of 2023 8th IEEE International Conference on Network Intelligence and Digital Content, IC-NIDC 2023, 2023, : 117 - 121
  • [42] Gate-controlled superconducting proximity effect in carbon nanotubes
    Morpurgo, AF
    Kong, J
    Marcus, CM
    Dai, H
    [J]. SCIENCE, 1999, 286 (5438) : 263 - 265
  • [43] Gate-controlled carrier injection into hexagonal boron nitride
    Otani, Minoru
    Okada, Susumu
    [J]. PHYSICAL REVIEW B, 2011, 83 (07)
  • [44] Gate-controlled photodetector in PIN technology for distance measurements
    Nemecek, A.
    Zimmermann, H.
    [J]. 2007 INTERNATIONAL SEMICONDUCTOR DEVICE RESEARCH SYMPOSIUM, VOLS 1 AND 2, 2007, : 585 - 586
  • [45] Gate-controlled superconductivity in a diffusive multiwalled carbon nanotube
    Tsuneta, T.
    Lechner, L.
    Hakonen, P. J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (08)
  • [46] SSR mitigation using gate-controlled series capacitors
    de Jesus, Fabio D.
    Watanabe, Edson. H.
    Souza, Luiz F. W.
    Alves, Jos E. R., Jr.
    [J]. 2006 POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-9, 2006, : 1168 - +
  • [47] Gate-controlled quantum dots and superconductivity in planar germanium
    N. W. Hendrickx
    D. P. Franke
    A. Sammak
    M. Kouwenhoven
    D. Sabbagh
    L. Yeoh
    R. Li
    M. L. V. Tagliaferri
    M. Virgilio
    G. Capellini
    G. Scappucci
    M. Veldhorst
    [J]. Nature Communications, 9
  • [48] GATE-CONTROLLED JUNCTION BREAKDOWN IN STORED CHARGE TRANSISTORS
    SPENCE, W
    [J]. PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1972, 60 (08): : 996 - &
  • [49] Gate-controlled near-surface Josephson junctions
    Olausson, L.
    Olausson, P.
    Lind, E.
    [J]. APPLIED PHYSICS LETTERS, 2024, 124 (04)
  • [50] Gate-controlled electromechanical backaction induced by a quantum dot
    Yuma Okazaki
    Imran Mahboob
    Koji Onomitsu
    Satoshi Sasaki
    Hiroshi Yamaguchi
    [J]. Nature Communications, 7