A generalization of cellular automata over groups

被引:2
|
作者
Castillo-Ramirez, A. [1 ]
Sanchez-Alvarez, M. [2 ]
Vazquez-Aceves, A. [1 ]
Zaldivar-Corichi, A. [1 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Guadalajara, Mexico
[2] Univ Guadalajara, Ctr Univ Los Valles, Guadalajara, Mexico
关键词
Cellular automata; Curtis-Hedlund theorem; monoid of cellular automata; outer automorphism group; 37B15; 68Q80;
D O I
10.1080/00927872.2023.2177663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $G$ be a group and let $A$ be a finite set with at least two elements. A cellular automaton (CA) over $A<^>G$ is a function $\tau : A<^>G \to A<^>G$ defined via a finite memory set $S \subseteq G$ and a local function $\mu :A<^>S \to A$. The goal of this paper is to introduce the definition of a generalized cellular automaton (GCA) $\tau : A<^>G \to A<^>H$, where $H$ is another arbitrary group, via a group homomorphism $\phi : H \to G$. Our definition preserves the essence of CA, as we prove analogous versions of three key results in the theory of CA: a generalized Curtis-Hedlund Theorem for GCA, a Theorem of Composition for GCA, and a Theorem of Invertibility for GCA. When $G=H$, we prove that the group of invertible GCA over $A<^>G$ is isomorphic to a semidirect product of $\text{Aut}(G)<^>{op}$ and the group of invertible CA. Finally, we apply our results to study automorphisms of the monoid $\text{CA}(G;A)$ consisting of all CA over $A<^>G$. In particular, we show that every $\phi \in \text{Aut}(G)$ defines an automorphism of $\text{CA}(G;A)$ via conjugation by the invertible GCA defined by $\phi$, and that, when $G$ is abelian, $\text{Aut}(G)$ is embedded in the outer automorphism group of $\text{CA}(G;A)$.
引用
收藏
页码:3114 / 3123
页数:10
相关论文
共 50 条
  • [1] Cellular automata and groups
    Eaton, Charles
    [J]. MATHEMATICAL GAZETTE, 2013, 97 (539): : 371 - 372
  • [2] Post-surjectivity and balancedness of cellular automata over groups
    Capobianco, Silvio
    Kari, Jarkko
    Taati, Siamak
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2017, 19 (03):
  • [3] Post-surjectivity and balancedness of cellular automata over groups
    [J]. 2017, Discrete Mathematics and Theoretical Computer Science (19):
  • [4] A Generalization of Automorphism Classification of Cellular Automata
    Nishio, Hidenosuke
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2012, 7 (02) : 167 - 177
  • [5] On the Surjunctivity of Artinian linear cellular automata over residually finite groups
    Ceccherini-Silberstein, Tullio
    Coornaert, Michel
    [J]. GEOMETRIC GROUP THEORY, 2007, : 37 - +
  • [6] Dynamical Properties of Additive Cellular Automata over Finite Abelian Groups
    邓爱平
    王枫杰
    伍陈晨
    [J]. Journal of Donghua University(English Edition), 2023, 40 (01) : 116 - 121
  • [7] Dynamical behavior of additive cellular automata over finite abelian groups
    Dennunzio, Alberto
    Formenti, Enrico
    Grinberg, Darij
    Margara, Luciano
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 843 : 45 - 56
  • [8] Dynamics of cellular automata on groups
    Yukita, S
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1999, E82D (10) : 1316 - 1323
  • [9] Cellular automata and finite groups
    Alonso Castillo-Ramirez
    Maximilien Gadouleau
    [J]. Natural Computing, 2019, 18 : 445 - 458
  • [10] Groups and Monoids of Cellular Automata
    Salo, Ville
    [J]. CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2015, 2015, 9099 : 17 - 45