Cellular automata and finite groups

被引:0
|
作者
Alonso Castillo-Ramirez
Maximilien Gadouleau
机构
[1] Universidad de Guadalajara,Departamento de Matemáticas
[2] CUCEI,School of Engineering and Computing Sciences
[3] Durham University,undefined
来源
Natural Computing | 2019年 / 18卷
关键词
Cellular automata; Invertible cellular automata; Finite groups; Finite monoids; Generating sets; MSC 68Q80; MSC 05E18; MSC 20M20;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite group G and a finite set A, we study various algebraic aspects of cellular automata over the configuration space AG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^G$$\end{document}. In this situation, the set CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document} of all cellular automata over AG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^G$$\end{document} is a finite monoid whose basic algebraic properties had remained unknown. First, we investigate the structure of the group of units ICA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {ICA}(G;A)$$\end{document} of CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document}. We obtain a decomposition of ICA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {ICA}(G;A)$$\end{document} into a direct product of wreath products of groups that depends on the numbers α[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{[H]}$$\end{document} of periodic configurations for conjugacy classes [H] of subgroups of G. We show how the numbers α[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{[H]}$$\end{document} may be computed using the Möbius function of the subgroup lattice of G, and we use this to improve the lower bound recently found by Gao, Jackson and Seward on the number of aperiodic configurations of AG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^G$$\end{document}. Furthermore, we study generating sets of CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document}; in particular, we prove that CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document} cannot be generated by cellular automata with small memory set, and, when all subgroups of G are normal, we determine the relative rank of ICA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {ICA}(G;A)$$\end{document} on CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document}, i.e. the minimal size of a set V⊆CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \subseteq \mathrm {CA}(G;A)$$\end{document} such that CA(G;A)=⟨ICA(G;A)∪V⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A) = \langle \mathrm {ICA}(G;A) \cup V \rangle$$\end{document}.
引用
收藏
页码:445 / 458
页数:13
相关论文
共 50 条
  • [1] Cellular automata and finite groups
    Castillo-Ramirez, Alonso
    Gadouleau, Maximilien
    NATURAL COMPUTING, 2019, 18 (03) : 445 - 458
  • [2] On the Dynamical Behavior of Cellular Automata on Finite Groups
    Dennunzio, Alberto
    Formenti, Enrico
    Margara, Luciano
    IEEE ACCESS, 2024, 12 : 122061 - 122077
  • [3] On a Characterization of Locally Finite Groups in Terms of Linear Cellular Automata
    Ceccherini-Silberstein, Tullio
    Coornaert, Michel
    JOURNAL OF CELLULAR AUTOMATA, 2011, 6 (2-3) : 207 - 213
  • [4] Cellular automata and groups
    Eaton, Charles
    MATHEMATICAL GAZETTE, 2013, 97 (539): : 371 - 372
  • [5] On the Surjunctivity of Artinian linear cellular automata over residually finite groups
    Ceccherini-Silberstein, Tullio
    Coornaert, Michel
    GEOMETRIC GROUP THEORY, 2007, : 37 - +
  • [6] Dynamical Properties of Additive Cellular Automata over Finite Abelian Groups
    邓爱平
    王枫杰
    伍陈晨
    Journal of Donghua University(English Edition), 2023, 40 (01) : 116 - 121
  • [7] Dynamical behavior of additive cellular automata over finite abelian groups
    Dennunzio, Alberto
    Formenti, Enrico
    Grinberg, Darij
    Margara, Luciano
    THEORETICAL COMPUTER SCIENCE, 2020, 843 : 45 - 56
  • [8] Dynamics of cellular automata on groups
    Yukita, S
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1999, E82D (10) : 1316 - 1323
  • [9] Groups and Monoids of Cellular Automata
    Salo, Ville
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2015, 2015, 9099 : 17 - 45
  • [10] UNIVERSAL GROUPS OF CELLULAR AUTOMATA
    Salo, Ville
    COLLOQUIUM MATHEMATICUM, 2022, 169 (01) : 39 - 78