Cellular automata and finite groups

被引:0
|
作者
Alonso Castillo-Ramirez
Maximilien Gadouleau
机构
[1] Universidad de Guadalajara,Departamento de Matemáticas
[2] CUCEI,School of Engineering and Computing Sciences
[3] Durham University,undefined
来源
Natural Computing | 2019年 / 18卷
关键词
Cellular automata; Invertible cellular automata; Finite groups; Finite monoids; Generating sets; MSC 68Q80; MSC 05E18; MSC 20M20;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite group G and a finite set A, we study various algebraic aspects of cellular automata over the configuration space AG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^G$$\end{document}. In this situation, the set CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document} of all cellular automata over AG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^G$$\end{document} is a finite monoid whose basic algebraic properties had remained unknown. First, we investigate the structure of the group of units ICA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {ICA}(G;A)$$\end{document} of CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document}. We obtain a decomposition of ICA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {ICA}(G;A)$$\end{document} into a direct product of wreath products of groups that depends on the numbers α[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{[H]}$$\end{document} of periodic configurations for conjugacy classes [H] of subgroups of G. We show how the numbers α[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{[H]}$$\end{document} may be computed using the Möbius function of the subgroup lattice of G, and we use this to improve the lower bound recently found by Gao, Jackson and Seward on the number of aperiodic configurations of AG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^G$$\end{document}. Furthermore, we study generating sets of CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document}; in particular, we prove that CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document} cannot be generated by cellular automata with small memory set, and, when all subgroups of G are normal, we determine the relative rank of ICA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {ICA}(G;A)$$\end{document} on CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document}, i.e. the minimal size of a set V⊆CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \subseteq \mathrm {CA}(G;A)$$\end{document} such that CA(G;A)=⟨ICA(G;A)∪V⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A) = \langle \mathrm {ICA}(G;A) \cup V \rangle$$\end{document}.
引用
收藏
页码:445 / 458
页数:13
相关论文
共 50 条
  • [21] Finite entropy for multidimensional cellular automata
    Meyerovitch, Tom
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 1243 - 1260
  • [22] THE ALGEBRAIC PROPERTIES OF FINITE CELLULAR AUTOMATA
    GUNJI, Y
    PHYSICA D, 1990, 41 (02): : 282 - 294
  • [23] Global Dynamics of Finite Cellular Automata
    Schuele, Martin
    Ott, Thomas
    Stoop, Ruedi
    ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT I, 2008, 5163 : 71 - +
  • [24] Finite automata over free groups
    Dassow, J
    Mitrana, V
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2000, 10 (06) : 725 - 737
  • [25] Finite automata presentable abelian groups
    Nies, Andre
    Semukhin, Pavel
    ANNALS OF PURE AND APPLIED LOGIC, 2009, 161 (03) : 458 - 467
  • [26] Finite automata presentable abelian groups
    Nies, Andre
    Semukhin, Pavel
    LOGICAL FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, 4514 : 422 - +
  • [27] Extended finite automata over groups
    Mitrana, V
    Stiebe, R
    DISCRETE APPLIED MATHEMATICS, 2001, 108 (03) : 287 - 300
  • [28] Linear cellular automata, finite automata and Pascal's triangle
    Allouche, JP
    vonHaeseler, F
    Peitgen, HO
    Skordev, G
    DISCRETE APPLIED MATHEMATICS, 1996, 66 (01) : 1 - 22
  • [30] Injective linear cellular automata and sofic groups
    Tullio Ceccherini-Silberstein
    Michel Coornaert
    Israel Journal of Mathematics, 2007, 161 : 1 - 15