A generalization of cellular automata over groups

被引:2
|
作者
Castillo-Ramirez, A. [1 ]
Sanchez-Alvarez, M. [2 ]
Vazquez-Aceves, A. [1 ]
Zaldivar-Corichi, A. [1 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Guadalajara, Mexico
[2] Univ Guadalajara, Ctr Univ Los Valles, Guadalajara, Mexico
关键词
Cellular automata; Curtis-Hedlund theorem; monoid of cellular automata; outer automorphism group; 37B15; 68Q80;
D O I
10.1080/00927872.2023.2177663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $G$ be a group and let $A$ be a finite set with at least two elements. A cellular automaton (CA) over $A<^>G$ is a function $\tau : A<^>G \to A<^>G$ defined via a finite memory set $S \subseteq G$ and a local function $\mu :A<^>S \to A$. The goal of this paper is to introduce the definition of a generalized cellular automaton (GCA) $\tau : A<^>G \to A<^>H$, where $H$ is another arbitrary group, via a group homomorphism $\phi : H \to G$. Our definition preserves the essence of CA, as we prove analogous versions of three key results in the theory of CA: a generalized Curtis-Hedlund Theorem for GCA, a Theorem of Composition for GCA, and a Theorem of Invertibility for GCA. When $G=H$, we prove that the group of invertible GCA over $A<^>G$ is isomorphic to a semidirect product of $\text{Aut}(G)<^>{op}$ and the group of invertible CA. Finally, we apply our results to study automorphisms of the monoid $\text{CA}(G;A)$ consisting of all CA over $A<^>G$. In particular, we show that every $\phi \in \text{Aut}(G)$ defines an automorphism of $\text{CA}(G;A)$ via conjugation by the invertible GCA defined by $\phi$, and that, when $G$ is abelian, $\text{Aut}(G)$ is embedded in the outer automorphism group of $\text{CA}(G;A)$.
引用
收藏
页码:3114 / 3123
页数:10
相关论文
共 50 条
  • [21] A generalization of the cellular automata rule-30 cryptoscheme
    Popovici, A
    Popovici, D
    [J]. Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Proceedings, 2005, : 158 - 164
  • [22] Coxeter Groups and Asynchronous Cellular Automata
    Macauley, Matthew
    Mortveit, Henning S.
    [J]. CELLULAR AUTOMATA, 2010, 6350 : 409 - +
  • [23] Cellular automata over semi-direct product groups: Reduction and invertibility results
    Capobianco, Silvio
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2006, 16 (06) : 1071 - 1085
  • [24] LINEAR CELLULAR AUTOMATA OVER ZM
    ITO, M
    OSATO, N
    NASU, M
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1983, 27 (01) : 125 - 140
  • [25] CELLULAR AUTOMATA OVER ALGEBRAIC STRUCTURES
    Castillo-Ramirez, Alonso
    Mata-Gutierrez, O.
    Zaldivar-Corichi, Angel
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2022, 64 (02) : 306 - 319
  • [26] On cellular automata over Galois rings
    Akin, Hasan
    Siap, Irfan
    [J]. INFORMATION PROCESSING LETTERS, 2007, 103 (01) : 24 - 27
  • [27] On the Synchronisation Problem over Cellular Automata
    Richard, Gaetan
    [J]. 34TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2017), 2017, 66
  • [28] Finite automata over free groups
    Dassow, J
    Mitrana, V
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2000, 10 (06) : 725 - 737
  • [29] Extended finite automata over groups
    Mitrana, V
    Stiebe, R
    [J]. DISCRETE APPLIED MATHEMATICS, 2001, 108 (03) : 287 - 300
  • [30] Injective linear cellular automata and sofic groups
    Tullio Ceccherini-Silberstein
    Michel Coornaert
    [J]. Israel Journal of Mathematics, 2007, 161 : 1 - 15