Multiple Solutions to p-Biharmonic Equations of Kirchhoff Type with Vanishing Potential

被引:1
|
作者
Chung, N. T. [1 ]
Ghanmi, A. [2 ]
Kenzizi, T. [2 ]
机构
[1] Quang Binh Univ, Dept Math, Dong Hoi, Quang Binh, Vietnam
[2] Univ Tunis El Manar, Fac Sci, Tunis 2092, Tunisia
关键词
p-biharmonic equation; Sobolev spaces; variational methods; NONLINEAR SCHRODINGER-EQUATIONS; NONTRIVIAL SOLUTIONS; ELLIPTIC PROBLEM; EXISTENCE;
D O I
10.1080/01630563.2023.2166530
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the p-biharmonic equation of Kirchhoff type {delta(2)(p)u - ( a + b integral (N )(R)| & nabla; u | (p)dx ) delta(u )(p)+ V (x) | u |(p-2)u = K (x) f (u) + lambda g (x)|u|(q-2)u, x in R-N; u in W-2,W-p (R-N) & cap; W-0(1,p )(R-N). where N >= 5, 1 < q < p < (2)/(N), a > 0, b >= 0, lambda is a positive parameter, delta(p)u = div( |& nabla; u | (p-2)& nabla;u ) is the p-Laplacian operator and delta(2)(p)u = delta( |delta u|( p-2 )delta u) is the p-biharmonic operator, V, K, g are nonnegative functions, V is vanishing at infinity in the sense that lim (|x|->+infinity) V (x) = 0. When the nonlinear term f(u)f(u) satisfies some suitable conditions, we prove that the above problem has at least two nontrivial solutions using the mountain pass theorem combined with the Ekeland variational principle.
引用
收藏
页码:202 / 220
页数:19
相关论文
共 50 条