Multiple positive solutions to critical p-Laplacian equations with vanishing potential

被引:0
|
作者
Lun Guo
Qi Li
机构
[1] Fudan University,School of Mathematical Sciences
[2] Wuhan University of Science and Technology,College of Science
[3] Central China Normal University,School of Mathematics and Statistics
关键词
-Laplacian equation; Critical Sobolev exponent; Vanishing potential; Positive solutions; Ljusternik–Schnirelman theory; 35J35; 35J62; 35J92;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the following p-Laplacian equation -εpΔpu+V(x)|u|p-2u=|u|p∗-2u,u∈D1,p(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\varepsilon ^{p}\Delta _{p}u+V(x)|u|^{p-2}u=|u|^{p^{*}-2}u,\quad u\in D^{1,p}({\mathbb {R}}^N), \end{aligned}$$\end{document}where p∈(1,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,N)$$\end{document}, p-Laplacian operator Δp:=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{p}{:}{=}$$\end{document}div(|∇u|p-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(|\nabla u|^{p-2}\nabla u) $$\end{document}, p∗=Np/(N-p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{*}=Np/(N-p)$$\end{document}, ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is a positive parameter, V(x)∈LN/p(RN)∩Lloc∞(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(x)\in L^{{N}/{p}}({\mathbb {R}}^N)\cap L^{\infty }_{loc}({\mathbb {R}}^N)$$\end{document} and V(x) is assumed to be zero in some region of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}, which means it is of the vanishing potential case. In virtue of Ljusternik–Schnirelman theory of critical points, we succeed in proving the multiplicity of positive solutions. This result generalizes the result for semilinear Schrödinger equation by Chabrowski and Yang (Port. Math. 57 (2000), 273–284) to p-Laplacian equation.
引用
收藏
相关论文
共 50 条