Geodesic surfaces in the complement of knots with small crossing number

被引:0
|
作者
Le, Khanh [1 ]
Palmer, Rebekah [2 ]
机构
[1] Rice Univ, Dept Math, 6100 Main St, Houston, TX 77005 USA
[2] Temple Univ, Dept Math, 1805 N Broad St, Philadelphia, PA 19122 USA
来源
关键词
hyperbolic knots; totally geodesic surfaces; SEIFERT SURFACES; HYPERBOLIC KNOT; ARITHMETICITY; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the problem of counting totally ge-odesic surfaces in the complement of hyperbolic knots with at most 9 cross-ings. Adapting previous counting techniques of boundary slope and inter-section, we establish uniqueness of a totally geodesic surface for the knots 74 and 935. Extending an obstruction to the existence of totally geodesic sur-faces due to Calegari, we show that there is no totally geodesic surface in the complement of 47 knots.
引用
收藏
页码:363 / 401
页数:39
相关论文
共 50 条