Geodesic surfaces in the complement of knots with small crossing number

被引:0
|
作者
Le, Khanh [1 ]
Palmer, Rebekah [2 ]
机构
[1] Rice Univ, Dept Math, 6100 Main St, Houston, TX 77005 USA
[2] Temple Univ, Dept Math, 1805 N Broad St, Philadelphia, PA 19122 USA
来源
关键词
hyperbolic knots; totally geodesic surfaces; SEIFERT SURFACES; HYPERBOLIC KNOT; ARITHMETICITY; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the problem of counting totally ge-odesic surfaces in the complement of hyperbolic knots with at most 9 cross-ings. Adapting previous counting techniques of boundary slope and inter-section, we establish uniqueness of a totally geodesic surface for the knots 74 and 935. Extending an obstruction to the existence of totally geodesic sur-faces due to Calegari, we show that there is no totally geodesic surface in the complement of 47 knots.
引用
收藏
页码:363 / 401
页数:39
相关论文
共 50 条
  • [21] An evaluation of the crossing number on ribbon 2-knots
    Yasuda, T
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2006, 15 (01) : 1 - 9
  • [22] Additivity of tunnel number for small knots
    Schultens, J
    COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) : 353 - 367
  • [23] Ribbon 2-knots of ribbon crossing number four
    Yasuda, Tomoyuki
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (10)
  • [24] Tait's conjectures and odd crossing number amphicheiral knots
    Stoimenow, A.
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 285 - 291
  • [25] Multi-crossing number for knots and the Kauffman bracket polynomial
    Adams, Colin
    Capovilla-Searle, Orsola
    Freeman, Jesse
    Irvine, Daniel
    Petti, Samantha
    Vitek, Daniel
    Weber, Ashley
    Zhang, Sicong
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 164 (01) : 147 - 178
  • [26] AVERAGE CROSSING NUMBER, TOTAL CURVATURE AND ROPELENGTH OF THICK KNOTS
    Ernst, C.
    Por, A.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (03)
  • [27] KNOTS IN STELLAR JETS - CROSSING SHOCKS OR INTERNAL WORKING SURFACES
    RAGA, AC
    NORIEGACRESPO, A
    REVISTA MEXICANA DE ASTRONOMIA Y ASTROFISICA, 1992, 24 (01) : 9 - 13
  • [28] Essential meridional surfaces for tunnel number one knots
    Eudave-Muñoz, M
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2000, 6 (02): : 263 - 277
  • [29] Triple-crossing number, the genus of a knot or link and torus knots
    Jablonowski, Michal
    TOPOLOGY AND ITS APPLICATIONS, 2020, 285
  • [30] Scaling of the average crossing number in equilateral random walks, knots and proteins
    Dobay, A
    Dubochet, J
    Stasiak, A
    Diao, YN
    PHYSICAL AND NUMERICAL MODELS IN KNOT THEORY, 2005, 36 : 219 - 231