Monochromatic quotients, products and polynomial sums in the rationals

被引:0
|
作者
Xiao, Rongzhong [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
Ramsey family; Piecewise syndetic subsets; Polynomial mapping; Multiple recurrence; Thick subsets;
D O I
10.1016/j.disc.2023.113795
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k, a is an element of N and let p1, center dot center dot center dot, pk is an element of Q[n] with zero constant term. We show that for any finite coloring of Q, there are non-zero x, y is an element of Q such that there exists a color which contains the set { } x, yx a ,x + p1(y),center dot center dot center dot,x + pk(y) and there are non-zero v, u is an element of Q such that there exists a color which contains the set { } v, v center dot ua, v + p1(u),center dot center dot center dot , v + pk(u) . (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] INFINITE SUMS INVOLVING GIBONACCI POLYNOMIAL PRODUCTS
    Koshy, Thomas
    FIBONACCI QUARTERLY, 2021, 59 (03): : 237 - 245
  • [12] Polynomial values of sums of products of consecutive integers
    A. Bazsó
    A. Bérczes
    L. Hajdu
    F. Luca
    Monatshefte für Mathematik, 2018, 187 : 21 - 34
  • [13] Polynomial values of sums of products of consecutive integers
    Bazso, A.
    Berczes, A.
    Hajdu, L.
    Luca, F.
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (01): : 21 - 34
  • [14] INFINITE SUMS INVOLVING JACOBSTHAL POLYNOMIAL PRODUCTS
    Koshy, Thomas
    FIBONACCI QUARTERLY, 2021, 59 (04): : 338 - 348
  • [15] RATIONALS AS PRODUCTS FROM A SEQUENCE OF RATIONALS
    BEHLER, K
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (02): : 167 - 167
  • [16] Approximating reals by sums of two rationals
    Chan, Tsz Ho
    JOURNAL OF NUMBER THEORY, 2008, 128 (05) : 1182 - 1194
  • [17] POLYNOMIAL FUNCTION RESTRICTED TO RATIONALS
    FOSTER, LL
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (01): : 61 - 61
  • [18] POLYNOMIAL QUOTIENTS
    LORD, G
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (01): : 81 - 82
  • [19] Limit theorems for sums of products of consecutive partial quotients of continued fractions
    Hu, Hui
    Hussain, Mumtaz
    Yu, Yueli
    NONLINEARITY, 2021, 34 (12) : 8143 - 8173
  • [20] Sums of Products of s-Fibonacci Polynomial Sequences
    Ruiz Velasco, Claudio de Jesus Pita
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (07)