Sums of Products of s-Fibonacci Polynomial Sequences

被引:0
|
作者
Ruiz Velasco, Claudio de Jesus Pita [1 ]
机构
[1] Univ Panamer, Mexico City, DF, Mexico
关键词
Fibonacci polynomials; s-polygibonomials; addition formulas;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider $ s$-Fibonacci polynomial sequences (F-0(x), F-s(x), F-2s(x), . . .), where s epsilon N is given. By studying certain z-polynomials involving s-polyfibonomials (n k)F-s (x)= F-sn(x)... Fs(n-k+1)(x) / F-s(x) ...F-ks(x) and s-Gibonacci polynomial sequences (G(0) (x) , G(s) (x) ,G(2s)(x), . . .), we generalize some known results (and obtain some new results) concerning sums of products and addition formulas of Fibonacci numbers.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] SUMS OF PRODUCTS INVOLVING FIBONACCI SEQUENCES
    ZEILBERGER, D
    FIBONACCI QUARTERLY, 1977, 15 (02): : 155 - 155
  • [2] Polynomial values in Fibonacci sequences
    Ostrov, Adi
    Neftin, Danny
    Berman, Avi
    Elrazik, Reyad A.
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (04): : 597 - 605
  • [3] On the reciprocal sums of the generalized Fibonacci sequences
    Zhang, Han
    Wu, Zhengang
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [4] On the reciprocal sums of the generalized Fibonacci sequences
    Han Zhang
    Zhengang Wu
    Advances in Difference Equations, 2013
  • [5] Melham's sums for some Lucas polynomial sequences
    Chung, Chan-Liang
    Zhong, Chunmei
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (02) : 383 - 409
  • [6] On the Reciprocal Sums of Products of Fibonacci Numbers
    Choo, Younseok
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (03)
  • [7] SUMS OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS
    BERZSENYI, G
    FIBONACCI QUARTERLY, 1975, 13 (04): : 343 - &
  • [8] Rational trigonometric sums for Fibonacci sequences and an analogue of Romanoff's theorem
    Vasil'ev, A. N.
    DOKLADY MATHEMATICS, 2014, 89 (03) : 349 - 350
  • [9] Rational trigonometric sums for Fibonacci sequences and an analogue of Romanoff’s theorem
    A. N. Vasil’ev
    Doklady Mathematics, 2014, 89 : 349 - 350
  • [10] SUMS, PRODUCTS AND IDENTITIES INVOLVING k-FIBONACCI AND k-LUCAS SEQUENCES
    Catarino, P.
    Vasco, P.
    Borges, A.
    Campos, H.
    Aires, A. P.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 32 (01): : 63 - 77