Sums of Products of s-Fibonacci Polynomial Sequences

被引:0
|
作者
Ruiz Velasco, Claudio de Jesus Pita [1 ]
机构
[1] Univ Panamer, Mexico City, DF, Mexico
关键词
Fibonacci polynomials; s-polygibonomials; addition formulas;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider $ s$-Fibonacci polynomial sequences (F-0(x), F-s(x), F-2s(x), . . .), where s epsilon N is given. By studying certain z-polynomials involving s-polyfibonomials (n k)F-s (x)= F-sn(x)... Fs(n-k+1)(x) / F-s(x) ...F-ks(x) and s-Gibonacci polynomial sequences (G(0) (x) , G(s) (x) ,G(2s)(x), . . .), we generalize some known results (and obtain some new results) concerning sums of products and addition formulas of Fibonacci numbers.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] SOME IDENTITIES FOR SEQUENCES OF BINOMIAL SUMS OF GENERALIZED FIBONACCI NUMBERS
    Cook, Charles K.
    Komatsu, Takao
    FIBONACCI QUARTERLY, 2016, 54 (02): : 105 - 111
  • [32] On the (s,t)-fibonacci and fibonacci matrix sequences
    Civciv, Haci
    Turkmen, Ramazan
    ARS COMBINATORIA, 2008, 87 : 161 - 173
  • [33] Monochromatic quotients, products and polynomial sums in the rationals
    Xiao, Rongzhong
    DISCRETE MATHEMATICS, 2024, 347 (03)
  • [34] INFINITE SUMS INVOLVING GIBONACCI POLYNOMIAL PRODUCTS
    Koshy, Thomas
    FIBONACCI QUARTERLY, 2021, 59 (03): : 237 - 245
  • [35] Polynomial values of sums of products of consecutive integers
    A. Bazsó
    A. Bérczes
    L. Hajdu
    F. Luca
    Monatshefte für Mathematik, 2018, 187 : 21 - 34
  • [36] Polynomial values of sums of products of consecutive integers
    Bazso, A.
    Berczes, A.
    Hajdu, L.
    Luca, F.
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (01): : 21 - 34
  • [37] INFINITE SUMS INVOLVING JACOBSTHAL POLYNOMIAL PRODUCTS
    Koshy, Thomas
    FIBONACCI QUARTERLY, 2021, 59 (04): : 338 - 348
  • [39] ALGEBRAIC INDEPENDENCE OF MODIFIED RECIPROCAL SUMS OF PRODUCTS OF FIBONACCI NUMBERS
    Tanaka, Taka-aki
    TSUKUBA JOURNAL OF MATHEMATICS, 2006, 30 (02) : 341 - 357
  • [40] Sums of certain products of Fibonacci and Lucas numbers - Part II
    Melham, RS
    FIBONACCI QUARTERLY, 2000, 38 (01): : 3 - 7