SynDrone - Multi-modal UAV Dataset for Urban Scenarios

被引:2
|
作者
Rizzoli, Giulia [1 ]
Barbato, Francesco [1 ]
Caligiuri, Matteo [1 ]
Zanuttigh, Pietro [1 ]
机构
[1] Univ Padua, Dept Informat Engn, Via Gradenigo 6 b, Padua, Italy
关键词
SEMANTIC SEGMENTATION; NETWORK;
D O I
10.1109/ICCVW60793.2023.00235
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The development of computer vision algorithms for Unmanned Aerial Vehicles (UAVs) imagery heavily relies on the availability of annotated high-resolution aerial data. However, the scarcity of large-scale real datasets with pixel-level annotations poses a significant challenge to researchers as the limited number of images in existing datasets hinders the effectiveness of deep learning models that require a large amount of training data. In this paper, we propose a multimodal synthetic dataset containing both images and 3D data taken at multiple flying heights to address these limitations. In addition to object-level annotations, the provided data also include pixel-level labeling in 28 classes, enabling exploration of the potential advantages in tasks like semantic segmentation. In total, our dataset contains 72k labeled samples that allow for effective training of deep architectures showing promising results in synthetic-to-real adaptation. The dataset will be made publicly available to support the development of novel computer vision methods targeting UAV applications.
引用
收藏
页码:2202 / 2212
页数:11
相关论文
共 50 条
  • [1] Dynamic clustering of multi-modal sensor networks in urban scenarios
    Wen, Yicheng
    Bein, Doina
    Phoha, Shashi
    [J]. INFORMATION FUSION, 2014, 15 : 130 - 140
  • [2] A Dataset and Benchmark Towards Multi-Modal Face Anti-Spoofing Under Surveillance Scenarios
    Chen, Xudong
    Xu, Shugong
    Ji, Qiaobin
    Cao, Shan
    [J]. IEEE ACCESS, 2021, 9 : 28140 - 28155
  • [3] Context-aware multi-modal route selection service for urban computing scenarios
    Brito, Matheus
    Santos, Camilo
    Martins, Bruno S.
    Medeiros, Iago
    Seruffo, Marcos
    Cerqueira, Eduardo
    Rosario, Denis
    [J]. AD HOC NETWORKS, 2024, 161
  • [4] A multi-subject, multi-modal human neuroimaging dataset
    Daniel G Wakeman
    Richard N Henson
    [J]. Scientific Data, 2
  • [5] A multi-subject, multi-modal human neuroimaging dataset
    Wakeman, Daniel G.
    Henson, Richard N.
    [J]. SCIENTIFIC DATA, 2015, 2
  • [6] A New Dataset for Intelligent Multi-Modal Sensing-Communication Integration in Low-Altitude Scenarios
    Bai, Lu
    Sun, Mingran
    Huang, Ziwei
    Cheng, Xiang
    [J]. PROCEEDINGS OF THE ACM TURING AWARD CELEBRATION CONFERENCE-CHINA 2024, ACM-TURC 2024, 2024, : 216 - 217
  • [7] MMChat: Multi-Modal Chat Dataset on Social Media
    Zheng, Yinhe
    Chen, Guanyi
    Liu, Xin
    Sun, Jian
    [J]. LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 5778 - 5786
  • [8] MSDWILD: MULTI-MODAL SPEAKER DIARIZATION DATASET IN THE WILD
    Liu, Tao
    Fang, Shuai
    Xiang, Xu
    Song, Hongbo
    Lin, Shaoxiong
    Sun, Jiaqi
    Han, Tianyuan
    Chen, Siyuan
    Yao, Binwei
    Liu, Sen
    Wu, Yifei
    Qian, Yanmin
    Yu, Kai
    [J]. INTERSPEECH 2022, 2022, : 1476 - 1480
  • [9] A multi-modal dataset for gait recognition under occlusion
    Li, Na
    Zhao, Xinbo
    [J]. APPLIED INTELLIGENCE, 2023, 53 (02) : 1517 - 1534
  • [10] A longitudinal multi-modal dataset for dementia monitoring and diagnosis
    Gkoumas, Dimitris
    Wang, Bo
    Tsakalidis, Adam
    Wolters, Maria
    Purver, Matthew
    Zubiaga, Arkaitz
    Liakata, Maria
    [J]. LANGUAGE RESOURCES AND EVALUATION, 2024, 58 (03) : 883 - 902