Dynamic clustering of multi-modal sensor networks in urban scenarios

被引:8
|
作者
Wen, Yicheng [1 ]
Bein, Doina [2 ]
Phoha, Shashi [2 ]
机构
[1] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA
关键词
Multi-modal data fusion; Urban scenario; Network controller; TRACKING;
D O I
10.1016/j.inffus.2012.09.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper addresses the issue of self-adaptation of a multi-modal sensor network with mobile sensors to better observe and track events of interest in a changing urban scenario by presenting a software module (middleware) called Event-driven Network Controller (ENC) that resides at every sensor node in the network and is independent of the sensor type. ENC translates the requirements of the application layer into messages that are diffused locally with the purpose of clustering multi-modal sensor nodes in the vicinity of an event and dynamically changing the local network topology, all to enhance the quality of the multi-modal data fusion. ENC is implemented in NS-2 to show its applicability for tracking a mobile target in an urban scenario using a network of pressure, video, and magnetic sensors. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 140
页数:11
相关论文
共 50 条
  • [1] Localization in multi-modal sensor networks
    Farrell, Ryan
    Garcia, Roberto
    Lucarelli, Dennis
    Terzis, Andreas
    Wang, I-Jeng
    [J]. PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING, 2007, : 37 - +
  • [2] SynDrone - Multi-modal UAV Dataset for Urban Scenarios
    Rizzoli, Giulia
    Barbato, Francesco
    Caligiuri, Matteo
    Zanuttigh, Pietro
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2202 - 2212
  • [3] Multi-modal calibration of surveillance sensor networks
    Ding, Min
    Terzis, Andreas
    Wang, I-Jeng
    Lucarelli, Dennis
    [J]. MILCOM 2006, VOLS 1-7, 2006, : 1530 - +
  • [4] Towards Dynamic Multi-Modal Intent Sensing Using Probabilistic Sensor Networks
    Russell, Joseph
    Bergmann, Jeroen H. M.
    Nagaraja, Vikranth H.
    [J]. SENSORS, 2022, 22 (07)
  • [5] On the scaling laws of multi-modal wireless sensor networks
    Gopala, PK
    El Gamal, T
    [J]. IEEE INFOCOM 2004: THE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2004, : 558 - 563
  • [6] Recognizing multi-modal sensor signals using evolutionary learning of dynamic Bayesian networks
    Young-Seol Lee
    Sung-Bae Cho
    [J]. Pattern Analysis and Applications, 2014, 17 : 695 - 707
  • [7] Recognizing multi-modal sensor signals using evolutionary learning of dynamic Bayesian networks
    Lee, Young-Seol
    Cho, Sung-Bae
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2014, 17 (04) : 695 - 707
  • [8] Sensor Scheduling for Multi-Modal Confident Information Coverage in Sensor Networks
    Deng, Xianjun
    Wang, Bang
    Liu, Wenyu
    Yang, Laurence T.
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (03) : 902 - 913
  • [9] Competition in multi-modal transport networks: A dynamic approach
    van der Weijde, Adriaan Hendrik
    Verhoef, Erik T.
    van den Berg, Vincent A. C.
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2013, 53 : 31 - 44
  • [10] Managing Multi-Modal Sensor Networks Using Price Theory
    Chavali, Phani
    Nehorai, Arye
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (09) : 4874 - 4887