Formylated Peptide Receptor-1-Mediated Gut Inflammation as a Therapeutic Target in Inflammatory Bowel Disease

被引:2
|
作者
McAllister, Milly J. [1 ]
Hall, Rebecca [1 ]
Whelan, Robert J. [1 ]
Fischer, Lena J. [1 ]
Chuah, Cher S. [1 ]
Cartlidge, Peter D. [1 ]
Drury, Broc [1 ]
Rutherford, Duncan G. [1 ]
Duffin, Rodger M. [1 ]
Cartwright, Jennifer A. [1 ]
Dorward, David A. [1 ]
Rossi, Adriano G. [1 ]
Ho, Gwo-tzer [1 ,2 ]
机构
[1] Univ Edinburgh, Ctr Inflammat Res, Edinburgh IBD Sci Unit, Queens Med Res Unit, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Queens Med Res Inst, Ctr Inflammat Res, Edinburgh IBD Sci Unit, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland
基金
英国医学研究理事会; 英国惠康基金;
关键词
IBD; neutrophils; FPR1; mitochondria; DAMPs; RECEPTOR; 1; GENE-EXPRESSION; CYCLOSPORINE-H; POTENT; FPR1; INHIBITOR; RESPONSES; COLITIS; MODEL; COLON;
D O I
10.1093/crocol/otae003
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background: Formylated peptide receptor (FPR)-1 is a G-coupled receptor that senses foreign bacterial and host-derived mitochondrial formylated peptides (FPs), leading to innate immune system activation. Aim: We sought to investigate the role of FPR1-mediated inflammation and its potential as a therapeutic target in inflammatory bowel disease (IBD). Methods: We characterized FPR1 gene and protein expression in 8 human IBD (similar to 1000 patients) datasets with analysis on disease subtype, mucosal inflammation, and drug response. We performed in vivo dextran-sulfate sodium (DSS) colitis in C57/BL6 FPR1 knockout mice. In ex vivo studies, we studied the role of mitochondrial FPs and pharmacological blockade of FPR1 using cyclosporin H in human peripheral blood neutrophils. Finally, we assess mitochondrial FPs as a potential mechanistic biomarker in the blood and stools of patients with IBD. Results: Detailed in silico analysis in human intestinal biopsies showed that FPR1 is highly expressed in IBD (n = 207 IBD vs 67 non-IBD controls, P < .001), and highly correlated with gut inflammation in ulcerative colitis (UC) and Crohn's disease (CD) (both P < .001). FPR1 receptor is predominantly expressed in leukocytes, and we showed significantly higher FPR1+ve neutrophils in inflamed gut tissue section in IBD (17 CD and 24 UC; both P < .001). Further analysis in 6 independent IBD (data available under Gene Expression Omnibus accession numbers GSE59071, GSE206285, GSE73661, GSE16879, GSE92415, and GSE235970) showed an association with active gut inflammation and treatment resistance to infliximab, ustekinumab, and vedolizumab. FPR1 gene deletion is protective in murine DSS colitis with lower gut neutrophil inflammation. In the human ex vivo neutrophil system, mitochondrial FP, nicotinamide adenine dinucleotide dehydrogenase subunit-6 (ND6) is a potent activator of neutrophils resulting in higher CD62L shedding, CD63 expression, reactive oxygen species production, and chemotactic capacity; these effects are inhibited by cyclosporin H. We screened for mitochondrial ND6 in IBD (n = 54) using ELISA and detected ND6 in stools with median values of 2.2 gg/mL (interquartile range [IQR] 0.0-4.99; range 0-53.3) but not in blood. Stool ND6 levels, however, were not significantly correlated with paired stool calprotectin, C-reactive protein, and clinical IBD activity. Conclusions: Our data suggest that FPR1-mediated neutrophilic inflammation is a tractable target in IBD; however, further work is required to clarify the clinical utility of mitochondrial FPs as a potential mechanistic marker for future stratification. Our study shows that a receptor called formylated peptide receptor-1 (FPR1) that "calls in inflammatory cells" to the gut might explain why there is too much inflammation in inflammatory bowel disease (IBD). "Switching off" FPR1 might be useful as a new way to treat IBD.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Gut microbiota in inflammatory bowel disease: a target for therapy not to be missed
    Larussa, Tiziana
    Abenavoli, Ludovico
    Fabiano, Giulia
    Mancuso, Maria A.
    Polimeni, Natale
    Dumitrascu, Dan L.
    Luzza, Francesco
    MINERVA GASTROENTEROLOGY, 2021, 67 (04): : 357 - 368
  • [22] APE1/Ref-1 as a Therapeutic Target for Inflammatory Bowel Disease
    Sahakian, Lauren
    Robinson, Ainsley M.
    Sahakian, Linda
    Stavely, Rhian
    Kelley, Mark R.
    Nurgali, Kulmira
    BIOMOLECULES, 2023, 13 (11)
  • [23] LXR-ABCA1 pathway: a therapeutic target in inflammatory bowel disease?
    Miranda-Bautista, J.
    Rodriguez-Feo, J. A.
    Lopez Cauce, B.
    Puerto, M.
    Lara, J. M.
    Banares, R.
    Menchen, L.
    JOURNAL OF CROHNS & COLITIS, 2018, 12 : S149 - S150
  • [24] Cortistatin, an anti inflammatory peptide with therapeutic action in inflammatory bowel disease
    Gonzalez-Rey, E
    Varela, N
    Sheibanie, AF
    Chorny, A
    Ganea, D
    Delgado, M
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (11) : 4228 - 4233
  • [25] Heme oxygenase-1: a new therapeutic target for inflammatory bowel disease
    Naito, Y
    Takagi, T
    Yoshikawa, T
    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2004, 20 : 177 - 184
  • [26] Characterisation and therapeutic manipulation of the gut microbiome in inflammatory bowel disease
    Schulberg, J.
    De Cruz, P.
    INTERNAL MEDICINE JOURNAL, 2016, 46 (03) : 266 - 273
  • [27] Letter: the sphingosine 1 phosphate/sphingosine 1 phosphate receptor axis-a unique therapeutic target in inflammatory bowel disease
    Radeke, Heinfried H.
    Stein, Juergen
    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2022, 55 (10) : 1359 - 1359
  • [28] Inflammatory gut as a pathologic and therapeutic target in Parkinson's disease
    Lee, Jea-Young
    Wang, Zhen-Jie
    Moscatello, Alexa
    Kingsbury, Chase
    Cozene, Blaise
    Farooq, Jeffrey
    Saft, Madeline
    Sadanandan, Nadia
    Gonzales-Portillo, Bella
    Zhang, Henry
    Esparza Salazar, Felipe
    Lezama Toledo, Alma Rosa
    Rivera Monroy, German
    Berlet, Reed
    Sanberg, Cyndy D.
    Sanberg, Paul R.
    Borlongan, Cesario, V
    CELL DEATH DISCOVERY, 2022, 8 (01)
  • [29] Inflammatory gut as a pathologic and therapeutic target in Parkinson’s disease
    Jea-Young Lee
    Zhen-Jie Wang
    Alexa Moscatello
    Chase Kingsbury
    Blaise Cozene
    Jeffrey Farooq
    Madeline Saft
    Nadia Sadanandan
    Bella Gonzales-Portillo
    Henry Zhang
    Felipe Esparza Salazar
    Alma Rosa Lezama Toledo
    Germán Rivera Monroy
    Reed Berlet
    Cyndy D. Sanberg
    Paul R. Sanberg
    Cesario V. Borlongan
    Cell Death Discovery, 8
  • [30] Unfermented β-fructan fibres can induce gut inflammation and tumorigenesis in select Inflammatory Bowel Disease patients mediated by gut microbiota
    Voisin, A.
    Mahmood, R.
    Jeanson, T. L.
    Bernstein, C.
    Armstrong, H.
    JOURNAL OF CROHNS & COLITIS, 2023, 17 : I60 - I61