Analyticity Results in Bernoulli Percolation

被引:1
|
作者
Georgakopoulos, Agelos [1 ]
Panagiotis, Christoforos [2 ]
机构
[1] Univ Warwick, Math Inst, Warwick CV4 7AL, England
[2] Univ Geneva, Sect Math, CH-1205 Geneva, Switzerland
基金
欧洲研究理事会;
关键词
PHASE-TRANSITION; CLUSTER-SIZE; BOND PERCOLATION; INFINITE CLUSTER; PROBABILITY; SHARPNESS; BEHAVIOR; PROOF; INEQUALITIES; UNIQUENESS;
D O I
10.1090/memo/1431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for Bernoulli percolation on Z(d), d >= 2, the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, we prove that the susceptibility is analytic in the subcritical interval for all transitive shortor long-range models, and that p(c)(bond) < 1/2 for certain families of triangulations for which Benjamini & Schramm conjectured that p(c)(site) <= 1/2.
引用
收藏
页码:1 / +
页数:103
相关论文
共 50 条