Analyticity Results in Bernoulli Percolation

被引:1
|
作者
Georgakopoulos, Agelos [1 ]
Panagiotis, Christoforos [2 ]
机构
[1] Univ Warwick, Math Inst, Warwick CV4 7AL, England
[2] Univ Geneva, Sect Math, CH-1205 Geneva, Switzerland
基金
欧洲研究理事会;
关键词
PHASE-TRANSITION; CLUSTER-SIZE; BOND PERCOLATION; INFINITE CLUSTER; PROBABILITY; SHARPNESS; BEHAVIOR; PROOF; INEQUALITIES; UNIQUENESS;
D O I
10.1090/memo/1431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for Bernoulli percolation on Z(d), d >= 2, the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, we prove that the susceptibility is analytic in the subcritical interval for all transitive shortor long-range models, and that p(c)(bond) < 1/2 for certain families of triangulations for which Benjamini & Schramm conjectured that p(c)(site) <= 1/2.
引用
收藏
页码:1 / +
页数:103
相关论文
共 50 条
  • [31] Quenched Survival of Bernoulli Percolation on Galton–Watson Trees
    Marcus Michelen
    Robin Pemantle
    Josh Rosenberg
    Journal of Statistical Physics, 2020, 181 : 1323 - 1364
  • [32] The travel time in a finite box in supercritical Bernoulli percolation
    Cerf, Raphael
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 9
  • [33] Lower bounds for boundary roughness for droplets in Bernoulli percolation
    Hasan B. Uzun
    Kenneth S. Alexander
    Probability Theory and Related Fields, 2003, 127 : 62 - 88
  • [34] Approximation on slabs and uniqueness for Bernoulli percolation with a sublattice of defects
    de Lima, Bernardo N. B.
    Martineau, Sebastien
    Sanna, Humberto C.
    Valesin, Daniel
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 : 1767 - 1797
  • [35] First-passage percolation, semi-directed Bernoulli percolation and failure in brittle materials
    Berlyand, L
    Rintoul, MD
    Torquato, S
    JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (3-4) : 603 - 623
  • [36] First-Passage Percolation, Semi-Directed Bernoulli Percolation, and Failure in Brittle Materials
    L. Berlyand
    M. D. Rintoul
    S. Torquato
    Journal of Statistical Physics, 1998, 91 : 603 - 623
  • [37] Analyticity of Homogenized Coefficients Under Bernoulli Perturbations and the Clausius-Mossotti Formulas
    Duerinckx, Mitia
    Gloria, Antoine
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (01) : 297 - 361
  • [38] Majorant estimates for the percolation threshold of a Bernoulli field on a square lattice
    Virchenko Yu.P.
    Tolmacheva Yu.A.
    Ukrainian Mathematical Journal, 2005, 57 (10) : 1535 - 1549
  • [39] Quenched Survival of Bernoulli Percolation on Galton-Watson Trees
    Michelen, Marcus
    Pemantle, Robin
    Rosenberg, Josh
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (04) : 1323 - 1364
  • [40] Monotonicity of the probability of percolation for Bernoulli random fields on periodic graphs
    Antonova E.S.
    Virchenko Y.P.
    Journal of Mathematical Sciences, 2011, 175 (1) : 86 - 90