Analyticity Results in Bernoulli Percolation

被引:1
|
作者
Georgakopoulos, Agelos [1 ]
Panagiotis, Christoforos [2 ]
机构
[1] Univ Warwick, Math Inst, Warwick CV4 7AL, England
[2] Univ Geneva, Sect Math, CH-1205 Geneva, Switzerland
基金
欧洲研究理事会;
关键词
PHASE-TRANSITION; CLUSTER-SIZE; BOND PERCOLATION; INFINITE CLUSTER; PROBABILITY; SHARPNESS; BEHAVIOR; PROOF; INEQUALITIES; UNIQUENESS;
D O I
10.1090/memo/1431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for Bernoulli percolation on Z(d), d >= 2, the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, we prove that the susceptibility is analytic in the subcritical interval for all transitive shortor long-range models, and that p(c)(bond) < 1/2 for certain families of triangulations for which Benjamini & Schramm conjectured that p(c)(site) <= 1/2.
引用
收藏
页码:1 / +
页数:103
相关论文
共 50 条
  • [1] Bernoulli line percolation
    Hilario, M. R.
    Sidoravicius, V.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (12) : 5037 - 5072
  • [2] Can constrained percolation be approximated by Bernoulli percolation?
    Reimann, S
    Tupak, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (48): : 10219 - 10227
  • [3] Neighboring clusters in Bernoulli percolation
    Timar, Adam
    ANNALS OF PROBABILITY, 2006, 34 (06): : 2332 - 2343
  • [4] No exceptional words for Bernoulli percolation
    Nolin, Pierre
    Tassion, Vincent
    Teixeira, Augusto
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (12) : 4841 - 4868
  • [5] No exceptional words for bernoulli percolation
    City University of Hong Kong
    不详
    不详
    arXiv,
  • [6] BERNOULLI PERCOLATION ABOVE THRESHOLD - AN INVASION PERCOLATION ANALYSIS
    CHAYES, JT
    CHAYES, L
    NEWMAN, CM
    ANNALS OF PROBABILITY, 1987, 15 (04): : 1272 - 1287
  • [7] Analyticity of Gaussian Free Field Percolation Observables
    Panagiotis, Christoforos
    Severo, Franco
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 396 (01) : 187 - 223
  • [8] Analyticity of Gaussian Free Field Percolation Observables
    Christoforos Panagiotis
    Franco Severo
    Communications in Mathematical Physics, 2022, 396 : 187 - 223
  • [9] A Remark on Monotonicity in Bernoulli Bond Percolation
    Bernardo N. B. de Lima
    Aldo Procacci
    Rémy Sanchis
    Journal of Statistical Physics, 2015, 160 : 1244 - 1248
  • [10] ON THE UPPER CRITICAL DIMENSION OF BERNOULLI PERCOLATION
    CHAYES, JT
    CHAYES, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (01) : 27 - 48