Effect of porous transport layer parameters on the proton exchange membrane electrolyzer performance

被引:7
|
作者
Zou, Long [1 ]
Shen, Qiuwan [1 ]
Liao, Jiadong [1 ]
Xu, Lingyi [1 ]
Yang, Guogang [1 ]
Li, Shian [1 ]
机构
[1] Dalian Maritime Univ, Marine Engn Coll, Dalian, Peoples R China
基金
中国博士后科学基金;
关键词
Porous transport layer; Parameters; PEMEC; Polarization curve; MATLAB; Simulink; MODEL; CELL;
D O I
10.1016/j.cplett.2023.140570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous transport layer (PTL) is one of the most important components in proton exchange membrane electrolyzer (PEMEC). In this study, a mathematical model of PEMEC is established in MATLAB/Simulink. The effects of different PTL parameters on the performance of PEMEC were studied. The results show that the increase in PTL thickness and porosity can increase the ohmic overpotential and reduce the performance of PEMEC. As PTL pore size decrease, the performance of PEMEC improves. The influence of pore size on the performance of PEMEC is smaller than that of porosity.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Optimization of anode porous transport layer in proton exchange membrane water electrolysis
    Xu, Guizhi
    Du, Xiaoze
    Que, Liulin
    Zhang, Liang
    Li, Jun
    Ye, Dingding
    Song, Jie
    Gao, Jie
    Applied Thermal Engineering, 2025, 263
  • [22] Dissolution of the Ti porous transport layer in proton exchange membrane water electrolyzers
    Cho, Junsic
    Kim, Dong Hyun
    Noh, Min Wook
    Kim, Haesol
    Oh, Hong-Gyun
    Lee, Pilyoung
    Yoon, Soobin
    Won, Wangyun
    Park, Young-June
    Lee, Ung
    Choi, Chang Hyuck
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (35) : 23688 - 23696
  • [23] Effect of the micro porous layer design on the dynamic performance of a proton exchange membrane fuel cell
    Cho, Junhyun
    Oh, Hwanyeong
    Park, Jaeman
    Min, Kyoungdoug
    Lee, Eunsook
    Jyoung, Jy-Young
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (01) : 459 - 468
  • [24] Electrochemical performance study of proton exchange membrane electrolyzer considering the effect of bubble coverage
    Su, Xin
    Xu, LiJun
    Zhu, Di
    Hu, Bing
    Mi, LuXiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (70) : 27079 - 27094
  • [25] A gradient porous transport layer enabling a high-performance proton-exchange membrane electrolysis cell
    Tang, Yinglun
    Su, Shangchun
    Niu, Xiaoxuan
    Song, Zhehui
    Li, Wenjia
    Renewable Energy, 2024, 237
  • [26] Investigation on the performance of proton exchange membrane water electrolyzer coupled with a catalyst layer pore network model
    Zeng, Yiding
    Luo, Maji
    Qin, Chaochao
    Liu, Cheng
    Chen, Ben
    ENERGY CONVERSION AND MANAGEMENT-X, 2024, 21
  • [27] Numerical simulation of gradient catalyst layer design in proton exchange membrane water electrolyzer with enhanced performance
    Li, Guangze
    Xu, Mingyi
    Qin, Yanzhou
    Zhang, Yongguang
    Wang, Yanji
    Yu, Xiong
    Li, Jingde
    FUEL, 2024, 368
  • [28] Numerical study of proton exchange membrane water electrolyzer performance based on catalyst layer agglomerate model
    Xu, Mingyi
    Li, Jingde
    Qin, Yanzhou
    Wang, Yanji
    Du, Xiaohang
    Liu, Guihua
    Chemical Engineering Journal, 2024, 499
  • [29] Performance improvement of proton exchange membrane electrolyzer cells by introducing in-plane transport enhancement layers
    Kang, Zhenye
    Yu, Shule
    Yang, Gaoqiang
    Li, Yifan
    Bender, Guido
    Pivovar, Bryan S.
    Green, Johney B., Jr.
    Zhang, Feng-Yuan
    ELECTROCHIMICA ACTA, 2019, 316 : 43 - 51
  • [30] Preparation and Performance Evaluation of Microporous Transport Layers for Proton Exchange Membrane (PEM) Water Electrolyzer Anodes
    Ernst, Matthias F.
    Meier, Vivian
    Kornherr, Matthias
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (07)