Dissolution of the Ti porous transport layer in proton exchange membrane water electrolyzers

被引:0
|
作者
Cho, Junsic [1 ]
Kim, Dong Hyun [1 ]
Noh, Min Wook [1 ]
Kim, Haesol [1 ]
Oh, Hong-Gyun [2 ]
Lee, Pilyoung [3 ]
Yoon, Soobin [3 ]
Won, Wangyun [4 ]
Park, Young-June [3 ]
Lee, Ung [5 ,6 ,7 ]
Choi, Chang Hyuck [1 ,8 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem, Pohang 37673, South Korea
[2] Shinsung C&T, Global Sales Dept, Suwon 16648, South Korea
[3] Hyundai Motor Grp, Hydrogen & Fuel Cell Dev Ctr, Seoul 16891, South Korea
[4] Korea Univ, Dept Chem & Biol Engn, Seoul 02841, South Korea
[5] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 02792, South Korea
[6] Korea Univ, Green Sch, 145 Anam Ro, Seoul 02841, South Korea
[7] Korea Inst Sci & Technol Europe, KIST Europe, Campus E71, D-66123 Saarbrucken, Germany
[8] Yonsei Univ, Inst Convergence Res & Educ Adv Technol I CREATE, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
OXYGEN EVOLUTION REACTION; POLYMER ELECTROLYTE; STABILITY; IRIDIUM; ELECTROCATALYSTS; PERFORMANCE; DEGRADATION; PLATINUM;
D O I
10.1039/d4ta02755h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The titanium porous transport layer (PTL) is a key component in proton exchange membrane water electrolyzers (PEMWEs), facilitating efficient water supply to the catalyst layer while rapidly removing oxygen bubbles. However, in the highly anodic operating environment of PEMWEs, the Ti PTL suffers from degradation, limiting the lifetime of the device. To gain deeper insights into Ti PTL degradation, here we monitor the potential/time-resolved Ti dissolution rates by coupling a PEMWE with an online inductively coupled plasma-mass spectrometer (ICP-MS). The results show that the dissolution of the Ti PTL is a complex and dynamic (electro)chemical event. Initiated by the decreased interfacial pH (even at pH < 1) due to proton accumulation during PEMWE operation, Ti dissolution intensifies with increasing bias potential. However, the dissolved Ti ions are simultaneously hydrolyzed, forming surface Ti oxides that slow down the dissolution rate. Coating the Ti PTL surface with Pt and IrO2 effectively reduces Ti dissolution, albeit at a higher cost, but they are also susceptible to dissolution during operation. Interestingly, the dissolution profiles of Pt and IrO2 deposited on the Ti PTL differ significantly from their conventional behavior, which requires further investigation for reliable prediction and optimization of new PTL designs for practical implementation in PEMWEs.
引用
收藏
页码:23688 / 23696
页数:9
相关论文
共 50 条
  • [1] Understanding the Role of Water Flow and the Porous Transport Layer on the Performance of Proton Exchange Membrane Water Electrolyzers
    Garcia-Navarro, J.
    Schulze, M.
    Friedrich, K. A.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) : 1600 - 1610
  • [2] Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers
    Buehler, Melanie
    Hegge, Friedemann
    Holzapfel, Peter
    Bierling, Markus
    Suermann, Michel
    Vierrath, Severin
    Thiele, Simon
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (47) : 26984 - 26995
  • [3] Elucidating effects of catalyst loadings and porous transport layer morphologies on operation of proton exchange membrane water electrolyzers
    Kulkarni, Devashish
    Huynh, Alex
    Satjaritanun, Pongsarun
    O'Brien, Maeve
    Shimpalee, Sirivatch
    Parkinson, Dilworth
    Shevchenko, Pavel
    DeCarlo, Francesco
    Danilovic, Nemanja
    Ayers, Katherine E.
    Capuano, Christopher
    Zenyuk, Iryna, V
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 308
  • [4] High-performance porous transport layers for proton exchange membrane water electrolyzers
    Tao, Youkun
    Wu, Minhua
    Hu, Meiqi
    Xu, Xihua
    Abdullah, Muhammad I.
    Shao, Jing
    Wang, Haijiang
    SUSMAT, 2024, 4 (04):
  • [5] Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling
    Bock, Robert
    Karoliussen, Havard
    Seland, Frode
    Pollet, Bruno G.
    Thomassen, Magnus Skinlo
    Holdcroft, Steven
    Burheim, Odne S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (02) : 1236 - 1254
  • [6] The poisoning effects of Ti-ion from porous transport layers on the membrane electrode assembly of proton exchange membrane water electrolyzers
    Tan, Aidong
    Zhang, Yipeng
    Shi, Xiaoyun
    Ju, Chen
    Liu, Ping
    Yang, Tianrang
    Liu, Jianguo
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [7] In Search of Lost Iridium: Quantification of Anode Catalyst Layer Dissolution in Proton Exchange Membrane Water Electrolyzers
    Milosevic, Maja
    Boehm, Thomas
    Koerner, Andreas
    Bierling, Markus
    Winkelmann, Leonard
    Ehelebe, Konrad
    Hutzler, Andreas
    Suermann, Michel
    Thiele, Simon
    Cherevko, Serhiy
    ACS ENERGY LETTERS, 2023, 8 (06) : 2682 - 2688
  • [8] Toward Understanding Catalyst Layer Deposition Processes and Distribution in Anodic Porous Transport Electrodes in Proton Exchange Membrane Water Electrolyzers
    Bierling, Markus
    McLaughlin, David
    Mayerhoefer, Britta
    Thiele, Simon
    ADVANCED ENERGY MATERIALS, 2023, 13 (13)
  • [9] Bubble dynamic behaviors in the anode porous transport layer of proton exchange membrane electrolyzers using a microfluidic reactor
    Xu, Yang
    Ye, Dingding
    Zhu, Xun
    Wang, Yang
    Yang, Yang
    Chen, Rong
    Li, Jun
    Liao, Qiang
    JOURNAL OF POWER SOURCES, 2023, 582
  • [10] Optimization of anode porous transport layer in proton exchange membrane water electrolysis
    Xu, Guizhi
    Du, Xiaoze
    Que, Liulin
    Zhang, Liang
    Li, Jun
    Ye, Dingding
    Song, Jie
    Gao, Jie
    Applied Thermal Engineering, 2025, 263