Toward Understanding Catalyst Layer Deposition Processes and Distribution in Anodic Porous Transport Electrodes in Proton Exchange Membrane Water Electrolyzers

被引:12
|
作者
Bierling, Markus [1 ,2 ]
McLaughlin, David [1 ,2 ]
Mayerhoefer, Britta [1 ,2 ]
Thiele, Simon [1 ,2 ]
机构
[1] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg Renewable Energy, Cauerstr 1, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Chem & Biol Engn, Egerlandstr 3, D-91058 Erlangen, Germany
关键词
catalyst distributions; gas diffusion electrodes; modeling; PEM water electrolysis; porous transport electrodes; tomographies; ultrasonic spray coating; PEM ELECTROLYZER; FUEL-CELLS; PERFORMANCE; MICROSTRUCTURE; MORPHOLOGY; STABILITY;
D O I
10.1002/aenm.202203636
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Finding the optimum structure in porous transport electrodes (PTEs) for proton exchange membrane water electrolyzer anodes is one of the central current technological challenges. Both the structure of the porous transport layer (PTL) and its interaction with the catalyst layer are crucial in finding this optimum structure. In this regard, manufacturing the catalyst layer on top of a PTL as a structure-building process must be understood to find improved transport electrode structures. This work presents a PTE tomography where the catalyst ink is directly processed on a PTL. The catalyst distribution of anodic PTEs is analyzed and compared via X-ray microtomography and cross-sectional imaging of embedded PTE samples. The majority of the catalyst lies within the first 100 mu m of the PTE. Considering the penetration depth of the membrane, a maximum of 60% of the catalyst is effectively used. For the first time, a voxel-based catalyst layer deposition model is created and analyzed that is based on simple assumptions in the deposition process. This deposition model fits very well with the previous tomographic analysis. In the future, this model will allow more profound insight into the manufacturing process and is an important prerequisite for a future optimum design of PTEs.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers
    Buehler, Melanie
    Hegge, Friedemann
    Holzapfel, Peter
    Bierling, Markus
    Suermann, Michel
    Vierrath, Severin
    Thiele, Simon
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (47) : 26984 - 26995
  • [2] Understanding the Role of Water Flow and the Porous Transport Layer on the Performance of Proton Exchange Membrane Water Electrolyzers
    Garcia-Navarro, J.
    Schulze, M.
    Friedrich, K. A.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) : 1600 - 1610
  • [3] Dissolution of the Ti porous transport layer in proton exchange membrane water electrolyzers
    Cho, Junsic
    Kim, Dong Hyun
    Noh, Min Wook
    Kim, Haesol
    Oh, Hong-Gyun
    Lee, Pilyoung
    Yoon, Soobin
    Won, Wangyun
    Park, Young-June
    Lee, Ung
    Choi, Chang Hyuck
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (35) : 23688 - 23696
  • [4] Elucidating effects of catalyst loadings and porous transport layer morphologies on operation of proton exchange membrane water electrolyzers
    Kulkarni, Devashish
    Huynh, Alex
    Satjaritanun, Pongsarun
    O'Brien, Maeve
    Shimpalee, Sirivatch
    Parkinson, Dilworth
    Shevchenko, Pavel
    DeCarlo, Francesco
    Danilovic, Nemanja
    Ayers, Katherine E.
    Capuano, Christopher
    Zenyuk, Iryna, V
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 308
  • [5] Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling
    Bock, Robert
    Karoliussen, Havard
    Seland, Frode
    Pollet, Bruno G.
    Thomassen, Magnus Skinlo
    Holdcroft, Steven
    Burheim, Odne S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (02) : 1236 - 1254
  • [6] High-performance porous transport layers for proton exchange membrane water electrolyzers
    Tao, Youkun
    Wu, Minhua
    Hu, Meiqi
    Xu, Xihua
    Abdullah, Muhammad I.
    Shao, Jing
    Wang, Haijiang
    SUSMAT, 2024, 4 (04):
  • [7] Hydrophilic treatment of carbon paper for anodic porous transport layer in proton exchange membrane water electrolyzer
    Il Jang, Tae
    Ho, Guk Chol
    Ri, Hyok Min
    Hong, Songchol
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2024, : 221 - 233
  • [8] Dual-scale pore network modeling of two-phase transport in anode porous transport layer and catalyst layer of proton exchange membrane electrolyzers
    Xu, Yang
    Ye, Dingding
    Zhang, Wenqian
    Wang, Yang
    Li, Jun
    Zhang, Liang
    Huang, Jian
    Zhu, Xun
    Liao, Qiang
    ENERGY CONVERSION AND MANAGEMENT, 2024, 322
  • [9] Catalyst layer structure properties on hydrogen fuel generation performance of proton exchange membrane water electrolyzers
    Wang, Yulin
    Wang, Huixuan
    Dong, Xiaoyan
    Du, Yao
    He, Wei
    Zhao, Yulong
    Li, Hua
    FUEL, 2024, 364
  • [10] In Search of Lost Iridium: Quantification of Anode Catalyst Layer Dissolution in Proton Exchange Membrane Water Electrolyzers
    Milosevic, Maja
    Boehm, Thomas
    Koerner, Andreas
    Bierling, Markus
    Winkelmann, Leonard
    Ehelebe, Konrad
    Hutzler, Andreas
    Suermann, Michel
    Thiele, Simon
    Cherevko, Serhiy
    ACS ENERGY LETTERS, 2023, 8 (06) : 2682 - 2688