Canonical and canonoid transformations for Hamiltonian systems on (co)symplectic and (co)contact manifolds

被引:5
|
作者
Azuaje, R. [1 ]
Escobar-Ruiz, A. M. [1 ]
机构
[1] Univ Autonoma Metropolitana Unidad Iztapalapa, Dept Fis, San Rafael Atlixco 186, Mexico City 09340, Mexico
关键词
CONSTANTS; SYMMETRIES; REDUCTION; OPERATORS;
D O I
10.1063/5.0135045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present canonical and canonoid transformations considered as global geometrical objects for Hamiltonian systems. Under the mathematical formalisms of symplectic, cosymplectic, contact, and cocontact geometries, the canonoid transformations are defined for (co)symplectic and (co)contact Hamiltonian systems. The local characterizations of these transformations are derived explicitly, and it is demonstrated that for a given canonoid transformation, there exist constants of motion associated with it.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds
    Sharma, Harsh
    Mu, Hongliang
    Buchfink, Patrick
    Geelen, Rudy
    Glas, Silke
    Kramer, Boris
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [32] A changing-chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifolds
    Benettin, G
    Cherubini, AM
    Fassò, F
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (04): : 1189 - 1203
  • [33] Time-varying stabilization of Hamiltonian systems via generalized canonical transformations
    Fujimoto, K
    Sugie, T
    LAGRANGIAN AND HAMILTONIAN METHODS FOR NONLINEAR CONTROL, 2000, : 63 - 68
  • [34] Trajectory tracking control of nonholonomic Hamiltonian systems via generalized canonical transformations
    Fujimoto, K
    Sakurama, K
    Sugie, T
    EUROPEAN JOURNAL OF CONTROL, 2004, 10 (05) : 421 - 431
  • [35] Time-varying stabilization of nonholonomic Hamiltonian systems via canonical transformations
    Fujimoto, K
    Sugie, T
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 3269 - 3273
  • [36] Trajectory tracking control of nonholonomic Hamiltonian systems via-canonical transformations
    Fujimoto, K
    Sugie, T
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2818 - 2823
  • [37] Geometry and Topology of Two-Dimensional Symplectic Manifolds with Generic Singularities and Hamiltonian Systems on Them
    Konyaev, A. Yu.
    Kudryavtseva, E. A.
    Sidelnikov, V. I.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2024, 79 (05) : 230 - 243
  • [38] HOMOGENEOUS CANONICAL TRANSFORMATIONS IN PHASE SPACE - NECESSARY CONDITIONS FOR EXISTENCE OF SYMPLECTIC ACTIONS OF SIMPLE LIE GROUPS ON DIFFERENTIABLE MANIFOLDS
    CARATU, G
    MARMO, G
    SIMONI, A
    VITALE, B
    ZACCARIA, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1974, 19 (02): : 228 - 238
  • [39] Boundary Control of Distributed Port-Hamiltonian Systems via Generalised Canonical Transformations
    Macchelli, Alessandro
    Le Gorrec, Yann
    Ramirez, Hector
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [40] General framework of trajectory tracking control of Hamiltonian systems via generalized canonical transformations
    Fujimoto, K
    Sakurama, K
    Sugie, T
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 705 - 710