Canonical and canonoid transformations for Hamiltonian systems on (co)symplectic and (co)contact manifolds

被引:5
|
作者
Azuaje, R. [1 ]
Escobar-Ruiz, A. M. [1 ]
机构
[1] Univ Autonoma Metropolitana Unidad Iztapalapa, Dept Fis, San Rafael Atlixco 186, Mexico City 09340, Mexico
关键词
CONSTANTS; SYMMETRIES; REDUCTION; OPERATORS;
D O I
10.1063/5.0135045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present canonical and canonoid transformations considered as global geometrical objects for Hamiltonian systems. Under the mathematical formalisms of symplectic, cosymplectic, contact, and cocontact geometries, the canonoid transformations are defined for (co)symplectic and (co)contact Hamiltonian systems. The local characterizations of these transformations are derived explicitly, and it is demonstrated that for a given canonoid transformation, there exist constants of motion associated with it.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] HAMILTONIAN CO-HOMOLOGIES OF CANONICAL ALGEBRAS
    KRASILSHCHIK, IS
    DOKLADY AKADEMII NAUK SSSR, 1980, 251 (06): : 1306 - 1309
  • [22] NON-FORMAL CO-SYMPLECTIC MANIFOLDS
    Bazzoni, Giovanni
    Fernandez, Marisa
    Munoz, Vicente
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) : 4459 - 4481
  • [23] Quantum correspondence for linear canonical transformations on general Hamiltonian systems
    Yeon, KH
    Walls, DF
    Um, CI
    George, TF
    Pandey, LN
    PHYSICAL REVIEW A, 1998, 58 (03): : 1765 - 1774
  • [24] SYMPLECTIC V-MANIFOLDS, PERIODIC ORBITS OF HAMILTONIAN SYSTEMS, AND VOLUME OF CERTAIN RIEMANNIAN MANIFOLDS
    WEINSTEIN, A
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (02) : 265 - 271
  • [25] A general framework for symplectic geometric integration for stochastically excited Hamiltonian systems on manifolds
    Panda, Satyam
    Chakraborty, Souvik
    Hazra, Budhaditya
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 170
  • [26] LIE INTEGRABILITY BY QUADRATURES FOR SYMPLECTIC, COSYMPLECTIC, CONTACT AND COCONTACT HAMILTONIAN SYSTEMS
    Azuaje, R.
    REPORTS ON MATHEMATICAL PHYSICS, 2024, 93 (01) : 37 - 56
  • [27] Canonical transformations and exact invariants for time-dependent Hamiltonian systems
    Struckmeier, J
    Riedel, C
    ANNALEN DER PHYSIK, 2002, 11 (01) : 15 - 38
  • [28] Hamilton-Jacobi theory for Hamiltonian systems with non-canonical symplectic structures
    Martínez-Merino, AA
    Montesinos, M
    ANNALS OF PHYSICS, 2006, 321 (02) : 318 - 330
  • [29] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
    Zhu, Beibei
    Ji, Lun
    Zhu, Aiqing
    Tang, Yifa
    CHINESE PHYSICS B, 2023, 32 (02)
  • [30] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
    朱贝贝
    纪伦
    祝爱卿
    唐贻发
    Chinese Physics B, 2023, (02) : 82 - 101