On estimation of covariance function for functional data with detection limits

被引:0
|
作者
Liu, Haiyan [1 ]
Houwing-Duistermaat, Jeanine [1 ,2 ]
机构
[1] Univ Leeds, Dept Stat, Leeds, England
[2] Radboud Univ Nijmegen, Dept Math, Nijmegen, Netherlands
关键词
Functional data analysis; informative missing; detection limit; local constant covariance estimation; SPARSE;
D O I
10.1080/10485252.2023.2258999
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many studies on disease progression, biomarkers are restricted by detection limits, hence informatively missing. Current approaches ignore the problem by just filling in the value of the detection limit for the missing observations for the estimation of the mean and covariance function, which yield inaccurate estimation. Inspired by our recent work [Liu and Houwing-Duistermaat (2022), 'Fast Estimators for the Mean Function for Functional Data with Detection Limits', Stat, e467.] in which novel estimators for mean function for data subject to detection limit are proposed, in this paper, we will propose a novel estimator for the covariance function for sparse and dense data subject to a detection limit. We will derive the asymptotic properties of the estimator. We will compare our method to the standard method, which ignores the detection limit, via simulations. We will illustrate the new approach by analysing biomarker data subject to a detection limit. In contrast to the standard method, our method appeared to provide more accurate estimates of the covariance. Moreover its computation time is small.
引用
收藏
页码:730 / 748
页数:19
相关论文
共 50 条
  • [31] Efficient semiparametric regression for longitudinal data with regularised estimation of error covariance function
    Jia, Shengji
    Zhang, Chunming
    Wu, Hulin
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2019, 31 (04) : 867 - 886
  • [32] Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis
    Jia, Shengji
    Zhang, Chunming
    Lu, Haoran
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 187
  • [33] Data-Driven Covariance Estimation
    Rogers, John T., II
    Ball, John E.
    Gurbuz, Ali C.
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON PHASED ARRAY SYSTEMS & TECHNOLOGY (PAST), 2022,
  • [34] Break point detection for functional covariance
    Jiao, Shuhao
    Frostig, Ron D.
    Ombao, Hernando
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (02) : 477 - 512
  • [35] OUTLIER DETECTION AND TRIMMED ESTIMATION FOR GENERAL FUNCTIONAL DATA
    Gervini, Daniel
    [J]. STATISTICA SINICA, 2012, 22 (04) : 1639 - 1660
  • [36] Interval estimation of population parameters based on environmental data with detection limits
    Peng, Cheng
    [J]. ENVIRONMETRICS, 2010, 21 (06) : 645 - 658
  • [37] Joint estimation of mean-covariance model for longitudinal data with basis function approximations
    Mao, Jie
    Zhu, Zhongyi
    Fung, Wing K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (02) : 983 - 992
  • [38] Regularized Covariance Matrix Estimation with High Dimensional Data for Supervised Anomaly Detection Problems
    Nikovski, Daniel
    Byadarhaly, Kiran
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2811 - 2818
  • [39] COVARIANCE ESTIMATION FUNCTION FOR SEMENOV AND KALMAN FILTERS
    VILENCHIK, LS
    KATULEV, AN
    MALEVINSKIY, MF
    [J]. TELECOMMUNICATIONS AND RADIO ENGINEERING, 1991, 46 (04) : 55 - 57
  • [40] Estimation of low-rank covariance function
    Koltchinskii, V.
    Lounici, K.
    Tsybakov, A. B.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (12) : 3952 - 3967