Estimation of low-rank covariance function

被引:1
|
作者
Koltchinskii, V. [1 ]
Lounici, K. [1 ]
Tsybakov, A. B. [2 ]
机构
[1] Georgia Inst Technol, 686 Cherry St, Atlanta, GA 30332 USA
[2] CREST ENSAE, Lab Stat, 3 Ave P Larousse, F-92240 Malakoff, France
基金
美国国家科学基金会;
关键词
Gaussian process; Low rank covariance function; Nuclear norm; Empirical risk minimization; Minimax lower bounds; Adaptationf; LONGITUDINAL DATA;
D O I
10.1016/j.spa.2016.04.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating a low rank covariance function K (t, u) of a Gaussian process S(t), t epsilon [0, 1] based on n i.i.d. copies of S observed in a white noise. We suggest a new estimation procedure adapting simultaneously to the low rank structure and the smoothness of the covariance function. The new procedure is based on nuclear norm penalization and exhibits superior performances as compared to the sample covariance function by a polynomial factor in the sample size n. Other results include a minimax lower bound for estimation of low-rank covariance functions showing that our procedure is optimal as well as a scheme to estimate the unknown noise variance of the Gaussian process. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:3952 / 3967
页数:16
相关论文
共 50 条
  • [1] Low-Rank Covariance Function Estimation for Multidimensional Functional Data
    Wang, Jiayi
    Wong, Raymond K. W.
    Zhang, Xiaoke
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (538) : 809 - 822
  • [2] Low-Rank Structured Covariance Matrix Estimation
    Shikhaliev, Azer P.
    Potter, Lee C.
    Chi, Yuejie
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 700 - 704
  • [3] Sparse and Low-Rank Covariance Matrix Estimation
    Zhou S.-L.
    Xiu N.-H.
    Luo Z.-Y.
    Kong L.-C.
    [J]. Journal of the Operations Research Society of China, 2015, 3 (02) : 231 - 250
  • [4] Adjoints and low-rank covariance representation
    Tippett, MK
    Cohn, SE
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2001, 8 (06) : 331 - 340
  • [5] Sparse and Low-Rank Decomposition of Covariance Matrix for Efficient DOA Estimation
    Chen, Yong
    Wang, Fang
    Wan, Jianwei
    Xu, Ke
    [J]. 2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 957 - 961
  • [6] Covariance Matrix Estimation Under Low-Rank Factor Model With Nonnegative Correlations
    Zhou, Rui
    Ying, Jiaxi
    Palomar, Daniel P.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4020 - 4030
  • [7] Robust low-rank covariance matrix estimation with a general pattern of missing values
    Hippert-Ferrer, A.
    El Korso, M. N.
    Breloy, A.
    Ginolhac, G.
    [J]. SIGNAL PROCESSING, 2022, 195
  • [8] MELT-Maximum-Likelihood Estimation of Low-Rank Toeplitz Covariance Matrix
    Babu, Prabhu
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (11) : 1587 - 1591
  • [9] Principal Subspace Estimation for Low-rank Toeplitz Covariance Matrices with Binary Sensing
    Fu, Haoyu
    Chi, Yuejie
    [J]. 2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 1344 - 1348
  • [10] Fast low-rank approximation for covariance matrices
    Belabbas, Mohamed-Ali
    Wolfe, Patrick J.
    [J]. 2007 2ND IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2007, : 181 - 184