Estimation of low-rank covariance function

被引:1
|
作者
Koltchinskii, V. [1 ]
Lounici, K. [1 ]
Tsybakov, A. B. [2 ]
机构
[1] Georgia Inst Technol, 686 Cherry St, Atlanta, GA 30332 USA
[2] CREST ENSAE, Lab Stat, 3 Ave P Larousse, F-92240 Malakoff, France
基金
美国国家科学基金会;
关键词
Gaussian process; Low rank covariance function; Nuclear norm; Empirical risk minimization; Minimax lower bounds; Adaptationf; LONGITUDINAL DATA;
D O I
10.1016/j.spa.2016.04.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating a low rank covariance function K (t, u) of a Gaussian process S(t), t epsilon [0, 1] based on n i.i.d. copies of S observed in a white noise. We suggest a new estimation procedure adapting simultaneously to the low rank structure and the smoothness of the covariance function. The new procedure is based on nuclear norm penalization and exhibits superior performances as compared to the sample covariance function by a polynomial factor in the sample size n. Other results include a minimax lower bound for estimation of low-rank covariance functions showing that our procedure is optimal as well as a scheme to estimate the unknown noise variance of the Gaussian process. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:3952 / 3967
页数:16
相关论文
共 50 条
  • [21] ROBUST LOW-RANK MATRIX ESTIMATION
    Elsener, Andreas
    van de Geer, Sara
    ANNALS OF STATISTICS, 2018, 46 (6B): : 3481 - 3509
  • [22] Multi-reference factor analysis: low-rank covariance estimation under unknown translations
    Landa, Boris
    Shkolnisky, Yoel
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (03) : 773 - 812
  • [23] On the impact of spatial covariance matrix ordering on tile low-rank estimation of Matérn parameters
    Chen, Sihan
    Abdulah, Sameh
    Sun, Ying
    Genton, Marc G.
    ENVIRONMETRICS, 2024,
  • [24] Low-rank covariance matrix tapering for robust adaptive beamforming
    Ruebsamen, Michael
    Gerlach, Christian
    Gershman, Alex B.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 2333 - 2336
  • [25] An adaptive singular value shrinkage for estimation problem of low-rank matrix mean with unknown covariance matrix
    Konno, Yoshihiko
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (01) : 455 - 464
  • [26] Low-Rank Covariance-Assisted Downlink Training and Channel Estimation for FDD Massive MIMO Systems
    Fang, Jun
    Li, Xingjian
    Li, Hongbin
    Gao, Feifei
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (03) : 1935 - 1947
  • [27] Efficient Pull-Rank Spatial Covariance Estimation Using Independent Low-Rank Matrix Analysis for Blind Source Separation
    Kubo, Yuki
    Takamune, Norihiro
    Kitantura, Daichi
    Saruwatari, Hiroshi
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [28] Low-rank estimation of higher order statistics
    Andre, TF
    Nowak, RD
    VanVeen, BD
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (03) : 673 - 685
  • [29] Improved sparse low-rank matrix estimation
    Parekh, Ankit
    Selesnick, Ivan W.
    SIGNAL PROCESSING, 2017, 139 : 62 - 69
  • [30] Low-Rank Room Impulse Response Estimation
    Jalmby, Martin
    Elvander, Filip
    van Waterschoot, Toon
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 957 - 969