Local Predecoder to Reduce the Bandwidth and Latency of Quantum Error Correction

被引:11
|
作者
Smith, Samuel C. [1 ]
Brown, Benjamin J. [1 ]
Bartlett, Stephen D. [1 ]
机构
[1] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
DECODERS;
D O I
10.1103/PhysRevApplied.19.034050
中图分类号
O59 [应用物理学];
学科分类号
摘要
A fault-tolerant quantum computer will be supported by a classical decoding system interfacing withquantum hardware to perform quantum error correction. It is important that the decoder can keep pacewith the quantum clock speed, within the limitations on communication that are imposed by the physicalarchitecture. To this end, we propose a local "predecoder," which makes greedy corrections to reducethe amount of syndrome data sent to a standard matching decoder. We study these classical overheadsfor the surface code under a phenomenological phase-flip noise model with imperfect measurements. Wefind substantial improvements in the run time of the global decoder and the communication bandwidth byusing the predecoder. For instance, to achieve a logical-failure probability off=10-15using qubits withphysical error ratep=10-3and a distanced=22 code, we find that the bandwidth cost is reduced by afactor of 1000 and that the time taken by a matching decoder is sped up by a factor of 200. To achieve thistarget failure probability, the predecoding approach requires a 50% increase in the qubit count compared with the optimal decoder
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Quantum error correction for beginners
    Devitt, Simon J.
    Munro, William J.
    Nemoto, Kae
    REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (07)
  • [32] Introduction to quantum error correction
    Steane, AM
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1743): : 1739 - 1757
  • [33] Experimental quantum error correction
    Cory, DG
    Price, MD
    Maas, W
    Knill, E
    Laflamme, R
    Zurek, WH
    Havel, TF
    Somaroo, SS
    PHYSICAL REVIEW LETTERS, 1998, 81 (10) : 2152 - 2155
  • [34] Methods of quantum error correction
    Grassl, M
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL I: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 740 - 743
  • [35] Approximate Quantum Error Correction
    Schumacher, Benjamin
    Westmoreland, Michael D.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 5 - 12
  • [36] Catalytic Quantum Error Correction
    Brun, Todd A.
    Devetak, Igor
    Hsieh, Min-Hsiu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) : 3073 - 3089
  • [37] Nonlinear quantum error correction
    Reichert, Maximilian
    Tessler, Louis W.
    Bergmann, Marcel
    van Loock, Peter
    Byrnes, Tim
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [38] Realization of quantum error correction
    J. Chiaverini
    D. Leibfried
    T. Schaetz
    M. D. Barrett
    R. B. Blakestad
    J. Britton
    W. M. Itano
    J. D. Jost
    E. Knill
    C. Langer
    R. Ozeri
    D. J. Wineland
    Nature, 2004, 432 : 602 - 605
  • [39] Deep Quantum Error Correction
    Choukroun, Yoni
    Wolf, Lior
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 64 - 72
  • [40] Motional quantum error correction
    Steinbach, J
    Twamley, J
    JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 453 - 485