We classify seven-dimensional nilpotent Lie groups, decomposable or of nilpotency step at most 4, endowed with left-invariant purely coclosed G(2)-structures. This is done by going through the list of all seven-dimensional nilpotent Lie algebras given by Gong, providing an example of a left-invariant 3-form phi which is a pure coclosed G(2)-structure (i.e., it satisfies d*phi=0$d*\varphi =0$, phi perpendicular to d phi=0$\varphi \wedge d\varphi =0$) for those nilpotent Lie algebras that admit them; and by showing the impossibility of having a purely coclosed G(2)-structure for the rest of them.
机构:
Univ Texas Rio Grande Valley, Sch Math & Stat Sci, 1201 W Univ Dr, Edinburg, TX 78539 USAUniv Texas Rio Grande Valley, Sch Math & Stat Sci, 1201 W Univ Dr, Edinburg, TX 78539 USA
机构:
Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USAUniv Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Fino, Anna
Martin-Merchan, Lucia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Waterloo, Dept Pure Math, 200 Univ Ave West, Waterloo, ON N2L 3G1, CanadaUniv Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Martin-Merchan, Lucia
Raffero, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
机构:
Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Basque Country, Fac Ciencia & Tecnol, Dept Matemat, Apartado 644, Bilbao 48080, Spain
Fino, Anna
Manero, Victor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Basque Country, Fac Ciencia & Tecnol, Dept Matemat, Apartado 644, Bilbao 48080, SpainUniv Basque Country, Fac Ciencia & Tecnol, Dept Matemat, Apartado 644, Bilbao 48080, Spain