Purely coclosed G2-structures on nilmanifolds

被引:1
|
作者
Bazzoni, Giovanni [1 ]
Garvin, Antonio [2 ]
Munoz, Vicente [3 ]
机构
[1] Univ Insubria, Dipartimento Sci & Alta Tecnol, Como, Italy
[2] Univ Malaga, Escuela Ingn Ind, Dept Matemat Aplicada, Campus Teatinos, Malaga, Spain
[3] Univ Malaga, Dept Algebra Geometria & Topol, Campus Teatinos S-N, Malaga 29071, Spain
关键词
purely coclosed G(2)-structures; SU(3)-structures; nilmanifolds; G(2);
D O I
10.1002/mana.202100665
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify seven-dimensional nilpotent Lie groups, decomposable or of nilpotency step at most 4, endowed with left-invariant purely coclosed G(2)-structures. This is done by going through the list of all seven-dimensional nilpotent Lie algebras given by Gong, providing an example of a left-invariant 3-form phi which is a pure coclosed G(2)-structure (i.e., it satisfies d*phi=0$d*\varphi =0$, phi perpendicular to d phi=0$\varphi \wedge d\varphi =0$) for those nilpotent Lie algebras that admit them; and by showing the impossibility of having a purely coclosed G(2)-structure for the rest of them.
引用
收藏
页码:2236 / 2257
页数:22
相关论文
共 50 条