A primer on the use of machine learning to distil knowledge from data in biological psychiatry

被引:2
|
作者
Quinn, Thomas P. [1 ]
Hess, Jonathan L. [2 ]
Marshe, Victoria S. [3 ,4 ]
Barnett, Michelle M. [5 ,6 ]
Hauschild, Anne-Christin [7 ]
Maciukiewicz, Malgorzata [8 ,9 ,10 ]
Elsheikh, Samar S. M. [4 ]
Men, Xiaoyu [4 ,11 ]
Schwarz, Emanuel [12 ]
Trakadis, Yannis J. [13 ]
Breen, Michael S. [14 ]
Barnett, Eric J. [15 ]
Zhang-James, Yanli [2 ]
Ahsen, Mehmet Eren [16 ,17 ]
Cao, Han [12 ]
Chen, Junfang [12 ]
Hou, Jiahui [2 ,15 ]
Salekin, Asif [18 ]
Lin, Ping-, I [19 ,20 ]
Nicodemus, Kristin K. [21 ]
Meyer-Lindenberg, Andreas [22 ]
Bichindaritz, Isabelle [23 ,24 ]
Faraone, Stephen V. [2 ,15 ]
Cairns, Murray J. [5 ,6 ]
Pandey, Gaurav [25 ]
Mueller, Daniel J. [4 ,26 ,27 ]
Glatt, Stephen J. [2 ,15 ,28 ]
机构
[1] Appl Artificial Intelligence Inst A2I2, Burwood, Vic 3125, Australia
[2] SUNY Upstate Med Univ, Dept Psychiat & Behav Sci, Norton Coll Med, Syracuse, NY 13210 USA
[3] Univ Toronto, Inst Med Sci, Toronto, ON M5S 1A1, Canada
[4] Ctr Addict & Mental Hlth, Pharmacogenet Res Clin, Campbell Family Mental Hlth Res Inst, Toronto, ON M5S 1A1, Canada
[5] Univ Newcastle, Sch Biomed Sci & Pharm, Callaghan, NSW 2308, Australia
[6] Hunter Med Res Inst, Precis Med Res Program, Newcastle, NSW 2308, Australia
[7] Med Univ Ctr Gottingen, Dept Med Informat, D-37075 Lower Saxony, Germany
[8] Univ Zurich, Hosp Zurich, CH-8091 Zurich, Switzerland
[9] Univ Hosp Bern, Dept Rheumatol & Immunol, CH-3010 Bern, Switzerland
[10] Univ Bern, Dept Biomed Res DBMR, CH-3010 Bern, Switzerland
[11] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON M5S 1A1, Canada
[12] Cent Inst Mental Hlth, Dept Psychiat & Psychotherapy, J5, D-68159 Mannheim, Baden Wurttembe, Germany
[13] McGill Univ, Dept Human Genet, Ctr Hlth, Montreal, PQ H4A 3J1, Canada
[14] Icahn Sch Med Mt Sinai, Psychiat Genet & Genom Sci, New York, NY 10029 USA
[15] SUNY Upstate Med Univ, Dept Neurosci & Physiol, Norton Coll Med, Syracuse, NY 13210 USA
[16] Univ Illinois, Gies Coll Business, Dept Business Adm, Champaign, IL 61820 USA
[17] Univ Illinois, Carle Illinois Sch Med, Dept Biomed & Translat Sci, Champaign, IL 61820 USA
[18] Syracuse Univ, Elect Engn & Comp Sci, Syracuse, NY 13244 USA
[19] Univ New South Wales, Discipline Psychiat & Mental Hlth, Sydney, NSW 2052, Australia
[20] South Western Sydney Local Hlth Dist, Mental Hlth Res Unit, Liverpool, NSW 2170, Australia
[21] Univ Edinburgh, Usher Inst, Edinburgh EH8 9YL, Scotland
[22] Cent Inst Mental Hlth, Clin Dept Psychiat & Psychotherapy, J5, D-68159 Mannheim, Baden Wurttembe, Germany
[23] SUNY Coll Oswego, Biomed & Hlth Informat, Comp Sci Dept, New York, NY 13126 USA
[24] SUNY Coll Oswego, Intelligent Bio Syst Lab, Oswego, NY 13126 USA
[25] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[26] Univ Toronto, Dept Psychiat, Toronto, ON M5S 1A1, Canada
[27] Univ Hosp Wurzburg, Ctr Mental Hlth, Dept Psychiat Psychosomat & Psychotherapy, D-97080 Wurzburg, Germany
[28] SUNY Upstate Med Univ, Norton Coll Med, Dept Publ Hlth & Prevent Med, Syracuse, NY 13210 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
GENE-EXPRESSION; BIPOLAR DISORDER; PATTERN-RECOGNITION; NEURAL-NETWORKS; OPEN SCIENCE; SCHIZOPHRENIA; CLASSIFICATION; SELECTION; BLOOD; DISEASE;
D O I
10.1038/s41380-023-02334-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Applications of machine learning in the biomedical sciences are growing rapidly. This growth has been spurred by diverse cross-institutional and interdisciplinary collaborations, public availability of large datasets, an increase in the accessibility of analytic routines, and the availability of powerful computing resources. With this increased access and exposure to machine learning comes a responsibility for education and a deeper understanding of its bases and bounds, borne equally by data scientists seeking to ply their analytic wares in medical research and by biomedical scientists seeking to harness such methods to glean knowledge from data. This article provides an accessible and critical review of machine learning for a biomedically informed audience, as well as its applications in psychiatry. The review covers definitions and expositions of commonly used machine learning methods, and historical trends of their use in psychiatry. We also provide a set of standards, namely Guidelines for REporting Machine Learning Investigations in Neuropsychiatry (GREMLIN), for designing and reporting studies that use machine learning as a primary data-analysis approach. Lastly, we propose the establishment of the Machine Learning in Psychiatry (MLPsych) Consortium, enumerate its objectives, and identify areas of opportunity for future applications of machine learning in biological psychiatry. This review serves as a cautiously optimistic primer on machine learning for those on the precipice as they prepare to dive into the field, either as methodological practitioners or well-informed consumers.
引用
收藏
页码:387 / 401
页数:15
相关论文
共 50 条
  • [1] Editorial Commentary: Knowledge is Power: A Primer for Machine Learning
    Wellington, Ian James
    Messina, James C.
    Cote, Mark P.
    [J]. ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2023, 39 (02): : 159 - 160
  • [2] Broadening the Use of Machine Learning in Psychiatry
    Adkinson, Brendan D.
    Chekroud, Adam M.
    [J]. BIOLOGICAL PSYCHIATRY, 2023, 93 (01) : 4 - 5
  • [3] Machine learning, statistical learning and the future of biological research in psychiatry
    Iniesta, R.
    Stahl, D.
    McGuffin, P.
    [J]. PSYCHOLOGICAL MEDICINE, 2016, 46 (12) : 2455 - 2465
  • [4] A primer to use big(ger) data from clinical cohorts and its integration with novel modalities ( machine learning continued)
    Baranzini, S.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (3_SUPPL) : 101 - 102
  • [5] Knowledge Discovery: Methods from data mining and machine learning
    Shu, Xiaoling
    Ye, Yiwan
    [J]. SOCIAL SCIENCE RESEARCH, 2023, 110
  • [6] Machine Learning for Knowledge Extraction from PHR Big Data
    Poulymenopoulou, Michaela
    Malamateniou, Flora
    Vassilacopoulos, George
    [J]. INTEGRATING INFORMATION TECHNOLOGY AND MANAGEMENT FOR QUALITY OF CARE, 2014, 202 : 36 - 39
  • [7] Machine learning of material behaviour knowledge from empirical data
    Reich, Y
    Travitzky, N
    [J]. MATERIALS & DESIGN, 1995, 16 (05): : 251 - 259
  • [8] Machine learning and complex biological data
    Xu, Chunming
    Jackson, Scott A.
    [J]. GENOME BIOLOGY, 2019, 20 (1)
  • [9] Machine learning and complex biological data
    Chunming Xu
    Scott A. Jackson
    [J]. Genome Biology, 20
  • [10] An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning
    Shah, Najeebullah
    Li, Jiaqi
    Li, Fanhong
    Chen, Wenchang
    Gao, Haoxiang
    Chen, Sijie
    Hua, Kui
    Zhang, Xuegong
    [J]. PATTERNS, 2020, 1 (05):