A primer on the use of machine learning to distil knowledge from data in biological psychiatry

被引:2
|
作者
Quinn, Thomas P. [1 ]
Hess, Jonathan L. [2 ]
Marshe, Victoria S. [3 ,4 ]
Barnett, Michelle M. [5 ,6 ]
Hauschild, Anne-Christin [7 ]
Maciukiewicz, Malgorzata [8 ,9 ,10 ]
Elsheikh, Samar S. M. [4 ]
Men, Xiaoyu [4 ,11 ]
Schwarz, Emanuel [12 ]
Trakadis, Yannis J. [13 ]
Breen, Michael S. [14 ]
Barnett, Eric J. [15 ]
Zhang-James, Yanli [2 ]
Ahsen, Mehmet Eren [16 ,17 ]
Cao, Han [12 ]
Chen, Junfang [12 ]
Hou, Jiahui [2 ,15 ]
Salekin, Asif [18 ]
Lin, Ping-, I [19 ,20 ]
Nicodemus, Kristin K. [21 ]
Meyer-Lindenberg, Andreas [22 ]
Bichindaritz, Isabelle [23 ,24 ]
Faraone, Stephen V. [2 ,15 ]
Cairns, Murray J. [5 ,6 ]
Pandey, Gaurav [25 ]
Mueller, Daniel J. [4 ,26 ,27 ]
Glatt, Stephen J. [2 ,15 ,28 ]
机构
[1] Appl Artificial Intelligence Inst A2I2, Burwood, Vic 3125, Australia
[2] SUNY Upstate Med Univ, Dept Psychiat & Behav Sci, Norton Coll Med, Syracuse, NY 13210 USA
[3] Univ Toronto, Inst Med Sci, Toronto, ON M5S 1A1, Canada
[4] Ctr Addict & Mental Hlth, Pharmacogenet Res Clin, Campbell Family Mental Hlth Res Inst, Toronto, ON M5S 1A1, Canada
[5] Univ Newcastle, Sch Biomed Sci & Pharm, Callaghan, NSW 2308, Australia
[6] Hunter Med Res Inst, Precis Med Res Program, Newcastle, NSW 2308, Australia
[7] Med Univ Ctr Gottingen, Dept Med Informat, D-37075 Lower Saxony, Germany
[8] Univ Zurich, Hosp Zurich, CH-8091 Zurich, Switzerland
[9] Univ Hosp Bern, Dept Rheumatol & Immunol, CH-3010 Bern, Switzerland
[10] Univ Bern, Dept Biomed Res DBMR, CH-3010 Bern, Switzerland
[11] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON M5S 1A1, Canada
[12] Cent Inst Mental Hlth, Dept Psychiat & Psychotherapy, J5, D-68159 Mannheim, Baden Wurttembe, Germany
[13] McGill Univ, Dept Human Genet, Ctr Hlth, Montreal, PQ H4A 3J1, Canada
[14] Icahn Sch Med Mt Sinai, Psychiat Genet & Genom Sci, New York, NY 10029 USA
[15] SUNY Upstate Med Univ, Dept Neurosci & Physiol, Norton Coll Med, Syracuse, NY 13210 USA
[16] Univ Illinois, Gies Coll Business, Dept Business Adm, Champaign, IL 61820 USA
[17] Univ Illinois, Carle Illinois Sch Med, Dept Biomed & Translat Sci, Champaign, IL 61820 USA
[18] Syracuse Univ, Elect Engn & Comp Sci, Syracuse, NY 13244 USA
[19] Univ New South Wales, Discipline Psychiat & Mental Hlth, Sydney, NSW 2052, Australia
[20] South Western Sydney Local Hlth Dist, Mental Hlth Res Unit, Liverpool, NSW 2170, Australia
[21] Univ Edinburgh, Usher Inst, Edinburgh EH8 9YL, Scotland
[22] Cent Inst Mental Hlth, Clin Dept Psychiat & Psychotherapy, J5, D-68159 Mannheim, Baden Wurttembe, Germany
[23] SUNY Coll Oswego, Biomed & Hlth Informat, Comp Sci Dept, New York, NY 13126 USA
[24] SUNY Coll Oswego, Intelligent Bio Syst Lab, Oswego, NY 13126 USA
[25] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[26] Univ Toronto, Dept Psychiat, Toronto, ON M5S 1A1, Canada
[27] Univ Hosp Wurzburg, Ctr Mental Hlth, Dept Psychiat Psychosomat & Psychotherapy, D-97080 Wurzburg, Germany
[28] SUNY Upstate Med Univ, Norton Coll Med, Dept Publ Hlth & Prevent Med, Syracuse, NY 13210 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
GENE-EXPRESSION; BIPOLAR DISORDER; PATTERN-RECOGNITION; NEURAL-NETWORKS; OPEN SCIENCE; SCHIZOPHRENIA; CLASSIFICATION; SELECTION; BLOOD; DISEASE;
D O I
10.1038/s41380-023-02334-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Applications of machine learning in the biomedical sciences are growing rapidly. This growth has been spurred by diverse cross-institutional and interdisciplinary collaborations, public availability of large datasets, an increase in the accessibility of analytic routines, and the availability of powerful computing resources. With this increased access and exposure to machine learning comes a responsibility for education and a deeper understanding of its bases and bounds, borne equally by data scientists seeking to ply their analytic wares in medical research and by biomedical scientists seeking to harness such methods to glean knowledge from data. This article provides an accessible and critical review of machine learning for a biomedically informed audience, as well as its applications in psychiatry. The review covers definitions and expositions of commonly used machine learning methods, and historical trends of their use in psychiatry. We also provide a set of standards, namely Guidelines for REporting Machine Learning Investigations in Neuropsychiatry (GREMLIN), for designing and reporting studies that use machine learning as a primary data-analysis approach. Lastly, we propose the establishment of the Machine Learning in Psychiatry (MLPsych) Consortium, enumerate its objectives, and identify areas of opportunity for future applications of machine learning in biological psychiatry. This review serves as a cautiously optimistic primer on machine learning for those on the precipice as they prepare to dive into the field, either as methodological practitioners or well-informed consumers.
引用
收藏
页码:387 / 401
页数:15
相关论文
共 50 条
  • [31] Subject Matter Knowledge in the Age of Big Data and Machine Learning
    Goldstein, Benjamin A.
    Carlson, David
    Bhavsar, Nrupen A.
    [J]. JAMA NETWORK OPEN, 2018, 1 (04)
  • [32] Machine Learning Pathway for Harnessing Knowledge and Data in Material Processing
    Sun, Ning
    Kopper, Adam
    Karkare, Rasika
    Paffenroth, Randy C.
    Apelian, Diran
    [J]. INTERNATIONAL JOURNAL OF METALCASTING, 2021, 15 (02) : 398 - 410
  • [33] Commentary: the ethical challenges of machine learning in psychiatry: a focus on data, diagnosis, and treatment
    Barron, Daniel S.
    [J]. PSYCHOLOGICAL MEDICINE, 2021, 51 (15) : 2522 - 2524
  • [34] Use of a fuzzy machine learning technique in the knowledge acquisition process
    Castro, JL
    Castro-Sanchez, JJ
    Zurita, JM
    [J]. FUZZY SETS AND SYSTEMS, 2001, 123 (03) : 307 - 320
  • [35] Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry
    Tai, Andy M. Y.
    Albuquerque, Alcides
    Carmona, Nicole E.
    Subramanieapillai, Mehala
    Cha, Danielle S.
    Sheko, Margarita
    Lee, Yena
    Mansur, Rodrigo
    McIntyre, Roger S.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 99
  • [36] Advancing Clinical Psychiatry: Integration of Clinical and Omics Data Using Machine Learning
    Qi, Bill
    Trakadis, Yannis J.
    [J]. BIOLOGICAL PSYCHIATRY, 2023, 94 (12) : 908 - 909
  • [37] Sports and machine learning: How young people can use data from their own bodies to learn about machine learning
    Zimmermann-Niefield, Abigail
    Shapiro, R. Benjamin
    Kane, Shaun
    [J]. XRDS: Crossroads, 2019, 25 (04): : 44 - 49
  • [38] On the Machine Learning Based Business Workflows Extracting Knowledge from Large Scale Graph Data
    Musaoglu, Mert
    Bekler, Merve
    Budak, Huseyin
    Akcelik, Celal
    Aktas, Mehmet S.
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2022 WORKSHOPS, PART V, 2022, 13381 : 463 - 475
  • [39] Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review
    Ciaburro, Giuseppe
    Iannace, Gino
    [J]. DATA, 2021, 6 (06)
  • [40] Machine learning for predicting opioid use disorder from healthcare data: A systematic review
    Garbin, Christian
    Marques, Nicholas
    Marques, Oge
    [J]. Computer Methods and Programs in Biomedicine, 2023, 236