An inexact quasi-Newton algorithm for large-scale l1 optimization with box constraints

被引:0
|
作者
Cheng, Wanyou [1 ]
Linpeng, Zhuanghan [2 ]
Li, Donghui [3 ]
机构
[1] Dongguan Univ Technol, Coll Comp, Dongguan 523000, Peoples R China
[2] Dongguan Univ Technol, Coll Comp & Sci Technol, Dongguan 523000, Peoples R China
[3] South China Normal Univ, Sch Math Sci, Guangzhou 510620, Guangdong, Peoples R China
关键词
l(1) optimization; Quasi-Newton; Proximity operator; THRESHOLDING ALGORITHM; SHRINKAGE; CONVERGENCE; MATRICES;
D O I
10.1016/j.apnum.2023.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop an inexact quasi-Newton algorithm for l(1)-regularization optimization problems subject to box constraints. The algorithm uses the identification technique of the proximal gradient algorithm to estimate the active set and free variables. To accelerate the convergence, we utilize the inexact quasi-Newton algorithm to update free variables. Under certain conditions, we show that the sequence generated by the algorithm converges R-linearly to a first-order optimality point of the problem. Moreover, the corresponding sequence of objective function values is also linearly convergent. Experiment results demonstrate the competitiveness of the proposed algorithm. (C) 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:179 / 195
页数:17
相关论文
共 50 条
  • [31] STRUCTURED QUASI-NEWTON METHODS FOR OPTIMIZATION WITH ORTHOGONALITY CONSTRAINTS
    Hu, Jiang
    Jiang, Bo
    Lin, Lin
    Wen, Zaiwen
    Yuan, Ya-Xiang
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2239 - A2269
  • [32] Large-scale quasi-Newton trust-region methods with low-dimensional linear equality constraints
    Johannes J. Brust
    Roummel F. Marcia
    Cosmin G. Petra
    [J]. Computational Optimization and Applications, 2019, 74 : 669 - 701
  • [33] Large-scale quasi-Newton trust-region methods with low-dimensional linear equality constraints
    Brust, Johannes J.
    Marcia, Roummel F.
    Petra, Cosmin G.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 74 (03) : 669 - 701
  • [34] Regularization of limited memory quasi-Newton methods for large-scale nonconvex minimization
    Christian Kanzow
    Daniel Steck
    [J]. Mathematical Programming Computation, 2023, 15 : 417 - 444
  • [35] Regularization of limited memory quasi-Newton methods for large-scale nonconvex minimization
    Kanzow, Christian
    Steck, Daniel
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2023, 15 (03) : 417 - 444
  • [36] A truncated Newton algorithm for large scale box constrained optimization
    Facchinei, F
    Lucidi, S
    Palagi, L
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (04) : 1100 - 1125
  • [37] A self-scaling quasi-newton method for large scale unconstrained optimization
    Jiang, Xiaowei
    Yang, Yueting
    [J]. Journal of Information and Computational Science, 2010, 7 (08): : 1739 - 1745
  • [38] A new regularized quasi-Newton algorithm for unconstrained optimization
    Zhang, Hao
    Ni, Qin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 460 - 469
  • [39] AN INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM FOR GENERIC QUASI-NEWTON ACCELERATION
    Lin, Hongzhou
    Mairal, Julien
    Harchaoui, Zaid
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1408 - 1443
  • [40] A QUASI-NEWTON ALGORITHM FOR LQG CONTROLLER DESIGN WITH VARIANCE CONSTRAINTS
    Conway, Richard
    Horowitz, Roberto
    [J]. PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2008, PTS A AND B, 2009, : 181 - +