AN INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM FOR GENERIC QUASI-NEWTON ACCELERATION

被引:6
|
作者
Lin, Hongzhou [1 ,2 ]
Mairal, Julien [1 ]
Harchaoui, Zaid [3 ]
机构
[1] Univ Grenoble Alpes, INRIA, CNRS, Grenoble INP,LJK, F-38330 Grenoble, France
[2] MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
[3] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
欧洲研究理事会;
关键词
convex optimization; quasi-Newton; L-BFGS; SUPERLINEAR CONVERGENCE; GLOBAL CONVERGENCE; OPTIMIZATION; MINIMIZATION; REGULARIZATION; SELECTION;
D O I
10.1137/17M1125157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an inexact variable-metric proximal point algorithm to accelerate gradient-based optimization algorithms. The proposed scheme, called QNing, can notably be applied to incremental first-order methods such as the stochastic variance-reduced gradient descent algorithm and other randomized incremental optimization algorithms. QNing is also compatible with composite objectives, meaning that it has the ability to provide exactly sparse solutions when the objective involves a sparsity-inducing regularization. When combined with limited-memory BFGS rules, QNing is particularly effective at solving high-dimensional optimization problems while enjoying a worst-case linear convergence rate for strongly convex problems. We present experimental results where QNing gives significant improvements over competing methods for training machine learning methods on large samples and in high dimensions.
引用
收藏
页码:1408 / 1443
页数:36
相关论文
共 50 条
  • [1] A QUASI-NEWTON ACCELERATION OF THE EM ALGORITHM
    LANGE, K
    [J]. STATISTICA SINICA, 1995, 5 (01) : 1 - 18
  • [2] Quasi-newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martínez, A.
    Putti, M.
    [J]. Electronic Transactions on Numerical Analysis, 2006, 23 : 76 - 87
  • [3] Quasi-Newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martinez, A.
    Putti, M.
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 23 : 76 - 87
  • [4] Practical inexact proximal quasi-Newton method with global complexity analysis
    Scheinberg, Katya
    Tang, Xiaocheng
    [J]. MATHEMATICAL PROGRAMMING, 2016, 160 (1-2) : 495 - 529
  • [5] Practical inexact proximal quasi-Newton method with global complexity analysis
    Katya Scheinberg
    Xiaocheng Tang
    [J]. Mathematical Programming, 2016, 160 : 495 - 529
  • [6] A Variable Memory Quasi-Newton Training Algorithm
    Seán McLoone
    George Irwin
    [J]. Neural Processing Letters, 1999, 9 : 77 - 89
  • [7] A variable memory Quasi-Newton training algorithm
    McLoone, S
    Irwin, G
    [J]. NEURAL PROCESSING LETTERS, 1999, 9 (01) : 77 - 89
  • [8] ON THE CONVERGENCE OF INEXACT QUASI-NEWTON METHODS
    MORET, I
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1989, 28 (1-4) : 117 - 137
  • [9] A class of inexact variable metric proximal point algorithms
    Parente, L. A.
    Lotito, P. A.
    Solodov, M. V.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 240 - 260
  • [10] Acceleration of the EM algorithm by using quasi-Newton methods
    Jamshidian, M
    Jennrich, RI
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (03): : 569 - 587