Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces

被引:1
|
作者
Yiyuan ZHANG [1 ]
Guangfu CAO [1 ]
Li HE [1 ]
机构
[1] School of Mathematics and Information Science, Guangzhou University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
In this paper, the authors investigate the boundedness of Toeplitz product TTand Hankel product H~*Hon Fock-Sobolev space for f, g ∈ P. As a result, the boundedness of Toeplitz operator Tand Hankel operator Hwith f ∈ P is characterized.
引用
收藏
页码:401 / 416
页数:16
相关论文
共 50 条
  • [41] MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES
    Ameur, Yacin
    Seo, Seong-Mi
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 397 - 420
  • [42] Microscopic densities and Fock-Sobolev spaces
    Yacin Ameur
    Seong-Mi Seo
    [J]. Journal d'Analyse Mathématique, 2019, 139 : 397 - 420
  • [43] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    [J]. Potential Analysis, 2015, 43 : 199 - 240
  • [44] On the Spectrum of Volterra-Type Integral Operators on Fock-Sobolev Spaces
    Mengestie, Tesfa
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (06) : 1451 - 1461
  • [45] Commuting Toeplitz Operators on Fock–Sobolev Spaces of Negative Orders
    Hong Rae Cho
    Han-Wool Lee
    [J]. Acta Mathematica Sinica, English Series, 2023, 39 : 1989 - 2005
  • [46] SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK-SOBOLEV SPACES
    Mengestie, Tesfa
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (06) : 1801 - 1816
  • [47] Gleason’s problem on Fock-Sobolev spaces
    Jineng Dai
    Jingyun Zhou
    [J]. Acta Mathematica Scientia, 2021, 41 : 337 - 348
  • [48] Gleason's problem on Fock-Sobolev spaces
    Dai, Jineng
    Zhou, Jingyun
    [J]. ACTA MATHEMATICA SCIENTIA, 2021, 41 (01) : 337 - 348
  • [49] On Products of Some Toeplitz Operators on Polyanalytic Fock Spaces
    Irène Casseli
    [J]. Czechoslovak Mathematical Journal, 2020, 70 : 369 - 379
  • [50] On Products of Some Toeplitz Operators on Polyanalytic Fock Spaces
    Casseli, Irene
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (02) : 369 - 379