Newton-type methods and their modifications for inverse heat conduction problems

被引:0
|
作者
康传刚 [1 ,2 ]
孟泽红 [3 ]
贺国强 [1 ]
机构
[1] Depaxtment of Mathematics,College of Sciences,Shanghai University
[2] Department of Mathematics,Tianjin Polytechnic University
[3] School of Mathematics and Statistics,Zhejiang University of Finance and Economics
关键词
nonlinear inverse problem; inverse heat conduction problem; Newton-Tikhonov method; Newton-implicit iterative method; modification;
D O I
暂无
中图分类号
O551.3 [物质的热性质];
学科分类号
0702 ;
摘要
This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.
引用
收藏
页码:196 / 200
页数:5
相关论文
共 50 条
  • [41] A Newton-type method for a transmission problem in inverse scattering
    Hohage, T
    Schormann, C
    INVERSE PROBLEMS, 1998, 14 (05) : 1207 - 1227
  • [42] On Fractional Newton-Type Method for Nonlinear Problems
    Bayrak, Mine Aylin
    Demir, Ali
    Ozbilge, Ebru
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [43] Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints
    A. F. Izmailov
    M. V. Solodov
    Computational Optimization and Applications, 2009, 42 : 231 - 264
  • [44] Some Newton-type methods for the regularization of nonlinear ill-posed problems
    Kaltenbacher, B
    INVERSE PROBLEMS, 1997, 13 (03) : 729 - 753
  • [45] A proximal Newton-type method for equilibrium problems
    P. J. S. Santos
    P. S. M. Santos
    S. Scheimberg
    Optimization Letters, 2018, 12 : 997 - 1009
  • [46] Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints
    Izmailov, A. F.
    Solodov, M. V.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 42 (02) : 231 - 264
  • [47] Gauss–Newton-type methods for bilevel optimization
    Jörg Fliege
    Andrey Tin
    Alain Zemkoho
    Computational Optimization and Applications, 2021, 78 : 793 - 824
  • [48] ON A GENERAL ITERATIVE SCHEME FOR NEWTON-TYPE METHODS
    MORET, I
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (11-12) : 1115 - 1137
  • [49] Newton-type methods for simultaneous matrix diagonalization
    Khouja, Rima
    Mourrain, Bernard
    Yakoubsohn, Jean-Claude
    CALCOLO, 2022, 59 (04)
  • [50] CONSISTENT APPROXIMATIONS IN NEWTON-TYPE DECOMPOSITION METHODS
    SCHMIDT, JW
    HOYER, W
    HAUFE, C
    NUMERISCHE MATHEMATIK, 1985, 47 (03) : 413 - 425