GLOBAL WELL-POSEDNESS FOR FRACTIONAL NAVIER-STOKES EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV-MORREY SPACES

被引:0
|
作者
Muhammad Zainul ABIDIN [1 ]
陈杰诚 [1 ]
机构
[1] College of Mathematics and Computer Science, Zhejiang Normal University
关键词
D O I
暂无
中图分类号
O177.39 [];
学科分类号
摘要
In this paper we study the Cauchy problem of the incompressible fractional Navier-Stokes equations in critical variable exponent Fourier-Besov-Morrey space ■ with s(·)=4-2α-3/p(·).We prove global well-posedness result with small initial data belonging to ■.The result of this paper extends some recent work.
引用
收藏
页码:164 / 176
页数:13
相关论文
共 50 条
  • [41] Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier–Besov spaces
    Weihua Wang
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [42] GLOBAL WELL-POSEDNESS AND DECAY RESULTS FOR 3D GENERALIZED MAGNETO-HYDRODYNAMIC EQUATIONS IN CRITICAL FOURIER-BESOV-MORREY SPACES
    EL Baraka, Azzeddine
    Toumlilin, Mohamed
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [43] Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces
    Zhang, Qian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 : 89 - 100
  • [44] Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces
    Sun, Xiaochun
    Wu, Yulian
    Xu, Gaoting
    AIMS MATHEMATICS, 2023, 8 (11): : 27065 - 27079
  • [45] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [46] Well-posedness for the 3-D generalized micropolar system in critical Fourier-Besov-Morrey spaces
    Gao, Peng
    Yuan, Baoquan
    Zhai, Tiantian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [47] GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    李金禄
    殷朝阳
    翟小平
    Acta Mathematica Scientia, 2022, 42 (05) : 2131 - 2148
  • [48] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148
  • [49] Global well-posedness to the incompressible Navier-Stokes equations with damping
    Zhong, Xin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (62)
  • [50] Global well-posedness of coupled Navier-Stokes and Darcy equations
    Cui, Meiying
    Dong, Wenchao
    Guo, Zhenhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 388 : 82 - 111