Non-Rigid Object Tracking by Anisotropic Kernel Mean Shift

被引:0
|
作者
齐苏敏
黄贤武
机构
[1] Qufu Normal University
[2] China
[3] Qufu 273165
[4] Suzhou 215021
[5] Department of Computer Science
[6] School of Electronics and Information Engineering Soochow University
基金
中国国家自然科学基金;
关键词
object tracking; mean shift; anisotropic kernel; modal matching;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Mean shift,an iterative procedure that shifts each data point to the average of data points in its neighborhood,has been applied to object tracker.However,the traditional mean shift tracker by isotropic kernel often loses the object with the changing object structure in video sequences,especially when the object structure varies fast.This paper proposes a non-rigid object tracker by anisotropic kernel mean shift in which the shape,scale,and orientation of the kernels adapt to the changing object structure.The experimental results show that the new tracker is self-adaptive and approximately twice faster than the traditional tracker,which ensures the robustness and real time of tracking.
引用
收藏
页码:370 / 374
页数:5
相关论文
共 50 条
  • [1] Non-rigid Object Tracking
    Zhou, Huiyu
    Schaefer, Gerald
    [J]. PROCEEDINGS ELMAR-2010, 2010, : 101 - 104
  • [2] NON-RIGID OBJECT TRACKING BY ADAPTIVE DATA-DRIVEN KERNEL
    Sun, Xin
    Yao, Hongxun
    Zhang, Shengping
    Sun, Mingui
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2958 - 2962
  • [3] Non-rigid object localization from color model using mean shift
    Jaffré, G
    Crouzil, A
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 317 - 320
  • [4] Real-time tracking of non-rigid objects using mean shift
    Comaniciu, D
    Ramesh, V
    Meer, P
    [J]. IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, VOL II, 2000, : 142 - 149
  • [5] Non-rigid object tracking in complex scenes
    Zhou, Huiyu
    Yuan, Yuan
    Zhang, Yi
    Shi, Chunmei
    [J]. PATTERN RECOGNITION LETTERS, 2009, 30 (02) : 98 - 102
  • [6] Non-rigid visual object tracking using user-defined marker and Gaussian kernel
    Huang, Guoheng
    Pun, Chi-Man
    Lin, Cong
    Zhou, Yicong
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (10) : 5473 - 5492
  • [7] Non-rigid visual object tracking using user-defined marker and Gaussian kernel
    Guoheng Huang
    Chi-Man Pun
    Cong Lin
    Yicong Zhou
    [J]. Multimedia Tools and Applications, 2016, 75 : 5473 - 5492
  • [8] Tracking Non-rigid Object using Discriminative Features
    Wang, Qian
    Shi, Qingxuan
    Tian, Xuedong
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 260 - 263
  • [9] Accurate Natural Contour Tracking for Non-Rigid Object
    Ying, Gaoxuan
    Liu, Sheng
    Liu, Zhemin
    Jin, Yiting
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1382 - 1387
  • [10] A new algorithm to rigid and non-rigid object tracking in complex environments
    Mazinan, A. H.
    Amir-Latifi, A.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 64 (9-12): : 1643 - 1651