Non-Rigid Object Tracking by Anisotropic Kernel Mean Shift

被引:0
|
作者
齐苏敏
黄贤武
机构
[1] Qufu Normal University
[2] China
[3] Qufu 273165
[4] Suzhou 215021
[5] Department of Computer Science
[6] School of Electronics and Information Engineering Soochow University
基金
中国国家自然科学基金;
关键词
object tracking; mean shift; anisotropic kernel; modal matching;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Mean shift,an iterative procedure that shifts each data point to the average of data points in its neighborhood,has been applied to object tracker.However,the traditional mean shift tracker by isotropic kernel often loses the object with the changing object structure in video sequences,especially when the object structure varies fast.This paper proposes a non-rigid object tracker by anisotropic kernel mean shift in which the shape,scale,and orientation of the kernels adapt to the changing object structure.The experimental results show that the new tracker is self-adaptive and approximately twice faster than the traditional tracker,which ensures the robustness and real time of tracking.
引用
收藏
页码:370 / 374
页数:5
相关论文
共 50 条
  • [31] Non-rigid object tracking using a likelihood spatio-temporal model
    Chavira-Martínez, D
    Pateux, S
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2003, PTS 1-3, 2003, 5150 : 334 - 345
  • [32] A Novel Hybrid Level Set Model for Non-Rigid Object Contour Tracking
    Cai, Qing
    Liu, Huiying
    Qian, Yiming
    Zhou, Sanping
    Wang, Jinjun
    Yang, Yee-Hong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 15 - 29
  • [33] The effect of rigid and non-rigid motion on object recognition
    Newell, F. N.
    Setti, A.
    [J]. PERCEPTION, 2006, 35 : 184 - 185
  • [34] Real-time Marker-based Tracking of a Non-rigid Object
    Koepfle, Andreas
    Beier, Florian
    Wagner, Clemens
    Maenner, Reinhard
    [J]. MEDICINE MEETS VIRTUAL REALITY 15: IN VIVO, IN VITRO, IN SILICO: DESIGNING THE NEXT IN MEDICINE, 2007, 125 : 232 - +
  • [35] Non-rigid object tracking using adaptive part-based model
    Shen, Xiaohui
    Zhang, Jin
    Zhou, Jie
    Rong, Gang
    [J]. MIPPR 2007: AUTOMATIC TARGET RECOGNITION AND IMAGE ANALYSIS; AND MULTISPECTRAL IMAGE ACQUISITION, PTS 1 AND 2, 2007, 6786
  • [36] Learning to Optimize Non-Rigid Tracking
    Li, Yang
    Bozic, Aljaz
    Zhang, Tianwei
    Ji, Yanli
    Harada, Tatsuya
    Niessner, Matthias
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4909 - 4917
  • [37] Kernel Non-Rigid Structure from Motion
    Gotardo, Paulo F. U.
    Martinez, Aleix M.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 802 - 809
  • [38] A Kernel-Based Method for Non-Rigid Tumor Tracking in KV Image Sequence
    Zhang, X.
    Homma, N.
    Ichiji, K.
    Takai, Y.
    Narita, Y.
    Abe, M.
    Sugita, N.
    Yoshizawa, M.
    [J]. MEDICAL PHYSICS, 2013, 40 (06)
  • [39] Mean Shift Algorithm in Object Tracking
    Wang, Juan
    Tao, Weiwei
    Zhao, Yizhi
    [J]. 2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 270 - 275
  • [40] Adaptive Kernel-bandwidth Object Tracking Based on Mean-shift Algorithm
    Zhang, Le
    Zhang, Danhong
    Su, Yixin
    Long, Fei
    [J]. PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 413 - 416