Non-rigid object localization from color model using mean shift

被引:0
|
作者
Jaffré, G [1 ]
Crouzil, A [1 ]
机构
[1] Univ Toulouse 3, Inst Rech Informat Toulouse, F-31062 Toulouse 4, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with non-rigid object localization in an image, from object colors. Our method allows detection in an image of all the objects which correspond to a color model, without a priori information about their number. Our approach consists in creating a binary image, which represents the repartition of the most probable pixels to be part of the object. Considering this image as a cluster in R-2, the object localization is done by finding all the cluster modes. This search is carried out by applying a statistical method: the mean shift procedure. To illustrate our approach, we use sport images, from which we try to detect all the players.
引用
收藏
页码:317 / 320
页数:4
相关论文
共 50 条
  • [1] Non-Rigid Object Tracking by Anisotropic Kernel Mean Shift
    齐苏敏
    黄贤武
    [J]. Transactions of Tianjin University, 2007, (05) : 370 - 374
  • [2] Non-Rigid Object Localization and Segmentation Using Eigenspace Representation
    Arif, Omar
    Vela, Patricio Antonio
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 803 - 808
  • [3] Real-time tracking of non-rigid objects using mean shift
    Comaniciu, D
    Ramesh, V
    Meer, P
    [J]. IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, VOL II, 2000, : 142 - 149
  • [4] Non-rigid Object Tracking
    Zhou, Huiyu
    Schaefer, Gerald
    [J]. PROCEEDINGS ELMAR-2010, 2010, : 101 - 104
  • [5] Rigid and Non-Rigid Object Image Matching using Deformable Object Image Discrimination
    Feng, Jian
    Won, In-su
    Jeong, Jae-hyup
    Jeong, Dong-seok
    [J]. 2015 21ST KOREA-JAPAN JOINT WORKSHOP ON FRONTIERS OF COMPUTER VISION, 2015,
  • [6] Non-rigid object tracking using a likelihood spatio-temporal model
    Chavira-Martínez, D
    Pateux, S
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2003, PTS 1-3, 2003, 5150 : 334 - 345
  • [7] Tracking Non-rigid Object using Discriminative Features
    Wang, Qian
    Shi, Qingxuan
    Tian, Xuedong
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 260 - 263
  • [8] Non-rigid object tracking using adaptive part-based model
    Shen, Xiaohui
    Zhang, Jin
    Zhou, Jie
    Rong, Gang
    [J]. MIPPR 2007: AUTOMATIC TARGET RECOGNITION AND IMAGE ANALYSIS; AND MULTISPECTRAL IMAGE ACQUISITION, PTS 1 AND 2, 2007, 6786
  • [9] A probabilistic model for object recognition, segmentation, and non-rigid correspondence
    Simon, Ian
    Seitz, Steven M.
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 346 - +
  • [10] The effect of rigid and non-rigid motion on object recognition
    Newell, F. N.
    Setti, A.
    [J]. PERCEPTION, 2006, 35 : 184 - 185