Residual Symmetry Reduction and Consistent Riccati Expansion of the Generalized Kaup-Kupershmidt Equation

被引:0
|
作者
刘希忠 [1 ]
俞军 [1 ]
楼智美 [1 ]
曹巧君 [1 ]
机构
[1] Institute of Nonlinear Science, Shaoxing University
基金
中国国家自然科学基金;
关键词
generalized Kaup-Kupershmidt equation; residual symmetry; consistent Riccati expansion;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
The residual symmetry of the generalized Kaup-Kupershmidt(gKK) equation is obtained from the truncated Painlevé expansion and localized to a Lie point symmetry in a prolonged system. New symmetry reduction solutions of the prolonged system are given by using the standard Lie symmetry method. Furthermore, the g KK equation is proved to integrable in the sense of owning consistent Riccati expansion and some new B¨acklund transformations are given based on this property, from which interaction solutions between soliton and periodic waves are given.
引用
收藏
页码:625 / 630
页数:6
相关论文
共 50 条
  • [21] A nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation
    Musette, M
    Verhoeven, C
    PROCEEDINGS OF THE WORKSHOP ON NONLINEARITY, INTEGRABILITY AND ALL THAT: TWENTY YEARS AFTER NEEDS '79, 2000, : 182 - 188
  • [22] ILL-POSEDNESS OF MODIFIED KAWAHARA EQUATION AND KAUP-KUPERSHMIDT EQUATION
    闫威
    李用声
    ActaMathematicaScientia, 2012, 32 (02) : 710 - 716
  • [23] ILL-POSEDNESS OF MODIFIED KAWAHARA EQUATION AND KAUP-KUPERSHMIDT EQUATION
    Yan Wei
    Li Yongsheng
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 710 - 716
  • [24] Explicit solutions to the Kaup-Kupershmidt equation via nonlocal symmetries
    Reyes, Enrique G.
    Sanchez, Guillermo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08): : 2749 - 2763
  • [25] Soliton solutions for the fifth-order Kaup-Kupershmidt equation
    Wang, Pan
    Xiao, Shu-Hong
    PHYSICA SCRIPTA, 2018, 93 (10)
  • [26] Nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation
    Musette, M
    Verhoeven, C
    PHYSICA D, 2000, 144 (1-2): : 211 - 220
  • [27] Group classification of the time-fractional Kaup-Kupershmidt equation
    Jafari, H.
    Kadkhoda, N.
    Azadi, M.
    Yaghoubi, M.
    SCIENTIA IRANICA, 2017, 24 (01) : 302 - 307
  • [28] Rational solutions of the (2+1)-dimensional Kaup-Kupershmidt equation
    Chen, Junchao
    Hu, Xueli
    Zhu, Shundong
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 150 - 157
  • [29] SYMMETRY ANALYSIS AND CONSERVATION LAWS OF THE TIME FRACTIONAL KAUP-KUPERSHMIDT EQUATION FROM CAPILLARY GRAVITY WAVES
    Zhao, Zhonglong
    Han, Bo
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (02)
  • [30] New traveling waves solutions to generalized Kaup-Kupershmidt and Ito equations
    Gomez S, Cesar A.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (01) : 241 - 250